首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   14篇
  国内免费   38篇
安全科学   1篇
废物处理   8篇
环保管理   5篇
综合类   75篇
基础理论   20篇
污染及防治   45篇
评价与监测   3篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   14篇
  2012年   8篇
  2011年   13篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
1.
Shewanella oneidensis MR-1对硫化汞的生物利用性研究   总被引:2,自引:2,他引:0  
陈艳  王卉  司友斌 《环境科学》2013,34(11):4466-4472
在实验室模拟条件下,研究了铁还原菌奥奈达希瓦式菌Shewanella oneidensis MR-1对固态硫化汞的生物溶解、生物甲基化作用及其影响因素.结果表明,铁还原菌S.oneidensis MR-1在含硫培养基中生长良好,低浓度硫素能够促进其生长,高浓度时细菌生长则受到抑制,这种抑制主要表现在菌株生长曲线迟缓期的延长;铁还原菌S.oneidensis MR-1能够利用固态硫化汞,促进其溶解并迅速进行汞甲基化;在S.oneidensis MR-1的耐硫化物范围内,菌株对硫化汞的生物溶解作用随着硫化钠浓度的增大而增强,但生物甲基化作用只在低浓度硫化钠时受到促进,硫化钠浓度过高时则会受到抑制;此外,弱酸性环境比酸性及中碱性的环境更有利于S.oneidensis MR-1对硫化汞的生物溶解及甲基化.  相似文献   
2.
探析施氏矿物在不同温度、pH下的溶解行为,对其在酸性煤矿废水(ACMD)重金属去除领域的应用具有重要的工程指导意义.本研究通过摇瓶实验,在0.16mol·L-1FeSO4·7H2O,初始pH为2.5的酸性体系中,采用氧化亚铁硫杆菌A.ferrooxidans催化合成施氏矿物.考察了15℃与30℃,pH为2.0$6.0环境条件下矿物的溶解行为,及生物合成施氏矿物对酸性体系Cu2+的吸附去除效果.研究结果表明,经过24h反应,施氏矿物合成体系pH从原始2.50降低至2.18,体系Fe2+氧化完全,27.3%的铁离子参与矿物的合成,矿物分子式可表示为Fe8O8(OH)4.22(SO4)1.89.生物合成施氏矿物在温度为15℃,pH分别为3.2、3.0、2.8、2.6、2.4、2.2与2.0液态体系中振荡72h,矿物溶解率分别为1.92%、3.34%、5.90%、13.09%、28.74%、44.53%与61.46%.在温度为30℃的上述酸度体系中,矿物溶解率在相应时间却达到2.04%、3.98%、8.34%、20.53%、43.50%、96.74%与99.92%.在pH≥3.5的不同温度液态体系中该矿物无溶解迹象.在15℃,pH为6.0、5.0、4.5、4.0与3.5,Cu2+浓度为40mg·g-1的液态体系中,生物合成施氏矿物对Cu2+的吸附量为(50.9±2.2)、(47.3±13.3)、(40.5±4.7)、(31.1±5.0)及(16.9±6.5)mg·g-1.体系酸度一定,施氏矿物在15℃与30℃条件下对Cu2+的吸附效果无显著差异.本研究结果对生物合成施氏矿物在ACMD重金属去除工程应用提供必要的参数支撑.  相似文献   
3.
Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr(2+) and SrEDTA(2-). The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA(2-) complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr(2+) as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr(2+) and SrEDTA(2-) suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA(2-), MnEDTA(2-), PbEDTA(2-), and unidentified Sr and Ca complexes. Displacement of Sr(2+) through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that sandy sediments of low water content constituted the immobile flow regime. Our results suggested that the sequestration of Sr(2+) in partially-saturated, heterogeneous sediments was most likely due to the formation of immobile water in drier regions having low hydraulic conductivities.  相似文献   
4.
• Highly efficient debromination of BDE-47 was achieved in the ZVZ/AA system. • BDE-47 debromination by the ZVZ/AA can be applied to a wide range of pH. • AA inhibits the formation of (hydr)oxide and accelerates the corrosion of ZVZ. • Reduction mechanism of BDE-47 debromination by the ZVZ/AA system was proposed. A new technique of zero-valent zinc coupled with ascorbic acid (ZVZ/AA) was developed and applied to debrominate the 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), which achieved high conversion and rapid debromination of BDE-47 to less- or non-toxic forms. The reaction conditions were optimized by the addition of 100 mg/L ZVZ particles and 3 mmol/L AA at original solution pH= 4.00 using the solvent of methanol/H2O (v:v= 4:6), which could convert approximately 94% of 5 mg/L BDE-47 into lower-brominated diphenyl ethers within a 90 min at the ZVZ/AA system. The high debromination of BDE-47 was mainly attributed to the effect of AA that inhibits the formation of Zn(II)(hydr)oxide passivation layers and promotes the corrosion of ZVZ, which leads to increase the reactivity of ZVZ. Additionally, ion chromatography and gas chromatography mass spectrometry analyses revealed that bromine ion and lower-debromination diphenyl ethers formed during the reduction of BDE-47. Furthermore, based on the generation of the intermediates products, and its concentration changes over time, it was proposed that the dominant pathway for conversion of BDE-47 was sequential debromination and the final products were diphenyl ethers. These results suggested that the ZVZ/AA system has the potential for highly efficient debromination of BDE-47 from wastewater.  相似文献   
5.
二氧化碳水合物储气特性的实验研究   总被引:2,自引:0,他引:2  
利用二氧化碳水合物小型实验装置分别在恒容和恒压条件下,研究了机械搅拌对二氧化碳气体溶解的影响以及温度与水-气比对二氧化碳水合物形成和储气密度的影响。通过实验结果发现,机械搅拌对二氧化碳的溶解有非常明显的促进作用,可以在3 min内完成溶解过程,促进溶解作用好于添加剂SDS。研究还发现,反应温度越低,二氧化碳水合物的生成速率越快,总的储气量越大,而水-气比越大,储气密度越小。在实验压力3 MPa、反应温度273.55 K的条件下,1体积的水生成水合物后可储存157体积的二氧化碳。  相似文献   
6.
Microbial reductive dechlorination of trichloroethene (TCE) and perchloroethene (PCE) in the vicinity of their dense non-aqueous phase liquid (DNAPL) has been shown to accelerate DNAPL dissolution. A three-layer diffusion-cell was developed to quantify this bio-enhanced dissolution and to measure the conditions near the DNAPL interface. The 12 cm long diffusion-cell setup consists of a 5.5 cm central porous layer (sand), a lower 3.5 cm DNAPL layer and a top 3 cm water layer. The water layer is frequently refreshed to remove chloroethenes at the upper boundary of the porous layer, while the DNAPL layer maintains the saturated chloroethene concentration at the lower boundary. Two abiotic and two biotic diffusion-cells with TCE DNAPL were tested. In the abiotic diffusion-cells, a linear steady state TCE concentration profile between the DNAPL and the water layer developed beyond 21 d. In the biotic diffusion-cells, TCE was completely converted into cis-dichloroethene (cis-DCE) at 2.5 cm distance of the DNAPL. Dechlorination was likely inhibited up to a distance of 1.5 cm from the DNAPL, as in this part the TCE concentration exceeded the culture’s maximum tolerable concentration (2.5 mM). The DNAPL dissolution fluxes were calculated from the TCE concentration gradient, measured at the interface of the DNAPL layer and the porous layer. Biotic fluxes were a factor 2.4 (standard deviation 0.2) larger than abiotic dissolution fluxes. This diffusion-cell setup can be used to study the factors affecting the bio-enhanced dissolution of DNAPL and to assess bioaugmentation, pH buffer addition and donor delivery strategies for source zones.  相似文献   
7.
Xu W  Wang H  Liu R  Zhao X  Qu J 《Chemosphere》2011,83(7):1020-1027
Ferric and manganese binary oxide (FMBO) has been successfully used to remediate arsenic-polluted river, but there still lacks sufficient data to evaluate its effects on environments. The release behaviors of iron (Fe), manganese (Mn), and arsenic (As) in different Eh ranges were investigated for As-bearing FMBO sediment after remediating As-polluted DaSha River by FMBO. Under high Eh range (+550 to +400 mV), slight dissolution of Fe and Mn, which corresponded to 12.2% and 25.6%, and less than 5% of As release were observed in 336 h. Under lower Eh range (+50 to −100 mV), elevated extent of the dissolution of Mn and Fe were observed, which corresponded to as high as 61.3% and 70.1%. Under such conditions, the dissolution rate of Mn was higher than that of Fe. Furthermore, from the established relationship of As release and the dissolution of Fe and Mn, the release of As seemed dominated by the dissolution of Fe. X-ray photoelectron spectroscopy (XPS) analysis demonstrated the release of Fe, Mn, As(III), and As(V) after sodium ascorbate-treatment, and the re-adsorption of As(V), as indicated from the increased binding energy of As 3d from 44.78 to 45.83 eV. Surface element composition analysis indicated significant decrease of Mn from 3.22% to 0.54%, slight increase of Fe from 12.45% to 13.67%, and elevated ratio of As from 0.11% to 0.32% accordingly. The main reactions of Fe and Mn dissolution and the pathways of As release under different Eh ranges were also proposed.  相似文献   
8.
The study aims to compare the detection of 16S rRNA gene of Dehalococcoides species and the microcosm study for biotransformation in predicting reductive dechlorination of chlorinated ethenes in ground water at hazardous waste sites. A total of 72 ground water samples were collected from 12 PCE or TCE contaminated sites in the United States. The samples were analyzed and used to construct microcosms in the laboratory. The results showed that the presence of Dehalococcoides DNA was well associated with dechlorination to ethene in the field. Nearly half of the wells where Dehalococcoides DNA was detected had ethene as a dechlorination end product. In comparison, for ground water samples of 16 wells where ethene was detected, ethene was produced in 11 of the corresponding microcosms. For most microcosms, during two years of incubation, dechlorination was less extensive than that observed in the field.  相似文献   
9.
Na He  Peijun Li  Yuncheng Zhou  Shuxiu Fan  Wanxia Ren   《Chemosphere》2009,76(11):1491-1497
The reductive dechlorination and biodegradation of 2,24,5,5-pentachlorobiphenyl (PCB#101) was investigated in a laboratory-scale. Palladium coated iron (Pd/Fe) was used as a catalytic reductant for the chemical degradation of 2,24,5,5-pentachlorobiphenyl, and an aerobic bacteria was used for biodegradation following the chemical reaction in this study. Dechlorination was affected by several factors such as Pd loading, initial soil pH and the amount of Pd/Fe used. The results showed that higher Pd loading, higher dosage of Pd/Fe and slightly acid condition were beneficial to the catalytic dechlorination of 2,2,4,5,5-pentachlorobiphenyl. In laboratory batch experiments, 2,24,5,5-pentachlorobiphenyl was reduced in the presence of Pd/Fe bimetal, which was not further degraded by aerobic bacteria. 2,2,4-trichlorobiphenyl (PCB#17), a reduction product from 2,24,5,5-pentachlorobiphenyl, was readily biodegraded in the presence of a aerobic bacterial strain. It is suggested that an integrated Pd/Fe catalytic reduction-aerobic biodegradation process may be a feasible option for treating PCB-contaminated soil.  相似文献   
10.
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号