首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   3篇
环保管理   2篇
综合类   5篇
污染及防治   1篇
  2021年   1篇
  2019年   1篇
  2015年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Biodegradation potentials of polycyclic aromatic hydrocarbons (PAHs) were determined with soil samples collected from various depths of a PAH-contaminated site and of a site nearby where PAHs were not found. Putative dioxygenase genes were amplified by a primer set specific for initial dioxygenases and identified by web-based database homology search. They were further categorized into several groups of which four dioxygenases were selected as probes for DNA hybridization. The hybridization signals according to the presence of putative dioxygenases were positively related to the extent of PAH contamination. However, the signal intensities varied depending on the probes hybridized and moreover were not consistent with PAH biodegradation activities determined by CO2 evolution. Despite widely accepted advantages of molecular biodegradation assessment, our data clearly present the variations of assessment results depending on the genetic information used and suggest that the methodology may tend to underestimate the real biodegradation capacity of a site probably due to the limited dioxygenase database available at the moment. Therefore, the molecular assessment of biodegradation potential should involve a very careful primer and probe design and an extensive microbiological examination of a site of interest to accurately delineate the biodegradation potential of the site.  相似文献   
2.
This study investigated the sorption characteristics and recovery of selected heavy metal Cd(II) from K-feldspar and sepiolite, representative soil components, using rhamnolipid biosurfactant. Although the proposed technique was classified as a soil bioremediation process, it can also be applied to treatment of waste waters containing Cd(II) ions with minor modifications. The effect of initial Cd(II) concentration on sorption capacity was characterized by determining the sorption isotherms. Of the four models examined, the Freundlich model showed the best fit for the sorption of Cd(II) on K-feldspar, whereas the Langmuir-model was used successfully to characterize the sorption of Cd(II) on sepiolite. Although a high Cd(II) uptake of 7.49 mmol/kg by K-feldspar was obtained, sepiolite was a superior Cd(II) accumulater, with a maximum Cd(II) uptake of 24.66 mmol Cd(II)/kg. The presence of Cd(II) in the sepiolite or K-feldspar prior to addition of the rhamnolipid generally resulted in less rhamnolipid sorption to sepiolite or K-feldspar. The maximum Cd(II) desorption efficiency by rhamnolipid from K-feldspar was substantially higher than that of sepiolite and determined to be 96% of the sorbed Cd(II), whereas only 10.1% of the sorbed Cd(II) from sepiolite was recovered by rhamnolipid solution.  相似文献   
3.
一株降解荧蒽的铜绿假单胞菌的筛选鉴定及其特性   总被引:1,自引:0,他引:1  
路薇  罗娜  董文  马艳玲 《环境科学学报》2015,35(11):3486-3492
荧蒽是一种疏水性极强的高分子量多环芳烃,在环境中能持久存在且难以被微生物降解.本研究从石油污染土壤中分离获得一株能够以荧蒽为唯一碳源和能源而生长良好的菌株,命名为DN1.通过形态观察、生理生化特性鉴定及16S rRNA gene同源序列分析,鉴定其为铜绿假单胞菌(Pseudomonas aeruginosa).研究发现,菌株DN1的最适生长温度为34~37℃,最适p H为5.5~7.5,并具有良好的产鼠李糖脂能力,摇瓶培养7 d内最高产量可达22.90 g·L-1.DN1这一特性有利于荧蒽乳化进而促使其生物降解,0.50 g·L-1荧蒽14 d内的降解率达到90.2%.酶活检测显示,邻苯二酚1,2-双加氧酶活性显著高于邻苯二酚2,3-双加氧酶活性,表明其在荧蒽生物降解中起主导作用.  相似文献   
4.
研究有毒化合物的生物降解途径.以鉴定有毒化合物在微生物作用下的降解中间产物.以及是否最终成为无害的产物(CO2和H2O),对人们认识有毒化合物在环境中的迁移规律及生物去除的办法.途径具有重要的启示作用。通过色质联机测试中间产物以及降解过程体系酶的变化,对产碱菌株F-3-4降解2,6-二叔丁基苯酚(2,6-DTBP)的途径和机理进行了研究。GC—MS测试结果表明。中间降解产物为乙酸、丙酮酸和异丁酸等化合物。降解过程体系酶测定结果显示.儿茶酚2,3-双加氧酶变化比较明显。表明在菌种生物降解底物过程中。主要以2,3位开裂为主。即主要以间位开裂途径进行开环反应,从而推测了F-3-4对2,6-DTBP的降解途径和机理。  相似文献   
5.
Microbial remediation of nitro-aromatic compounds: an overview   总被引:8,自引:0,他引:8  
Nitro-aromatic compounds are produced by incomplete combustion of fossil fuel or nitration reactions and are used as chemical feedstock for synthesis of explosives, pesticides, herbicides, dyes, pharmaceuticals, etc. The indiscriminate use of nitro-aromatics in the past due to wide applications has resulted in inexorable environmental pollution. Hence, nitro-aromatics are recognized as recalcitrant and given Hazardous Rating-3. Although several conventional pump and treat clean up methods are currently in use for the removal of nitro-aromatics, none has proved to be sustainable. Recently, remediation by biological systems has attracted worldwide attention to decontaminate nitro-aromatics polluted sources. The incredible versatility inherited in microbes has rendered these compounds as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or non-specific transformation of nitro-aromatics either by aerobic or anaerobic processes. Aerobic degradation of nitro-aromatics applies mainly to mono-, dinitro-derivatives and to some extent to poly-nitro-aromatics through oxygenation by: (i) monooxygenase, (ii) dioxygenase catalyzed reactions, (iii) Meisenheimer complex formation, and (iv) partial reduction of aromatic ring. Under anaerobic conditions, nitro-aromatics are reduced to amino-aromatics to facilitate complete mineralization. The nitro-aromatic explosives from contaminated sediments are effectively degraded at field scale using in situ bioremediation strategies, while ex situ techniques using whole cell/enzyme(s) immobilized on a suitable matrix/support are gaining acceptance for decontamination of nitrophenolic pesticides from soils at high chemical loading rates. Presently, the qualitative and quantitative performance of biological approaches of remediation is undergoing improvement due to: (i) knowledge of catabolic pathways of degradation, (ii) optimization of various parameters for accelerated degradation, and (iii) design of microbe(s) through molecular biology tools, capable of detoxifying nitro-aromatic pollutants. Among them, degradative plasmids have provided a major handle in construction of recombinant strains. Although recombinants designed for high performance seem to provide a ray of hope, their true assessment under field conditions is required to address ecological considerations for sustainable bioremediation.  相似文献   
6.
在由鼠李糖脂和Tween-80构建而成的复配逆胶束媒介研究了漆酶的催化性能.采用紫外法考察了Tween-80摩尔含量、逆胶束含水量、水相酸碱度、水相盐度以及助表面活性剂种类等反应条件对漆酶催化性能的影响.研究结果表明,反应的最佳条件:Tween-80的摩尔含量为30%,体系含水量为20,缓冲溶液pH为4.5,KCI浓度为70mmol/L,助表面活性剂正己醇.并且在最佳条件下,漆酶在复配逆胶束体系中的酶活比在单相鼠李糖脂逆胶束中高1.44倍,比在水溶液中高4.35倍,研究结果表明复配表面活性剂在构建胶束酶学上具有很大的潜力.  相似文献   
7.
Biochar(BC) and rhamnolipid(RL) is used in bioremediation of petroleum hydrocarbons,however, the combined effect of BC and RL in phytoremediation has not been studied until now. In this paper, the phytoremediation of petroleum hydrocarbon-contaminated soil using novel plant Spartina anglica was enhanced by the combination of biochar(BC) and rhamnolipid(RL). Samples of petroleum-contaminated soil(10, 30 and 50 g/kg) were amended by BC, BC+ RL and rhamnolipid modified biochar(RMB), respectively. After 60 day's cultivation, the removal rate of total petroleum hydrocarbons(TPHs) for unplanted soil(UP), planted soil(P), planted soil with BC addition(P-BC), planted soil with BC and RL addition(P-BC + RL) and planted soil with addition of RMB(P-RMB) were 8.6%, 19.1%, 27.7%,32.4% and 35.1% in soil with TPHs concentration of 30 g/kg, respectively. Compared with UP,the plantation of Spartina anglica significantly decreased the concentration of C_(8–14) and tricyclic PAHs. Furthermore, the application of BC and RMB alleviated the toxicity of petroleum hydrocarbons to Spartina anglica via improving plant growth with increasing plant height, root vitality and total chlorophyll content. High-throughput sequencing result indicated that rhizosphere microbial community of Spartina anglica was regulated by the application of BC and RMB, with increase of bacteria and plant mycorrhizal symbiotic fungus in biochar and RMB amended soil.  相似文献   
8.
Biotrickling filters (BTFs) for hydrophobic chlorobenzene (CB) purification are limited by mass transfer and biodegradation. The CB mass transfer rate could be improved by 150 mg/L rhamnolipids. This study evaluated the combined use of Fe3+ and Zn2+ to enhance biodegradation in a BTF over 35 day. The effects of these trace elements were analysed under different inlet concentrations (250, 600, 900, and 1200 mg/L) and empty bed residence times (EBRTs; 60, 45, and 32 sec). Batch experiments showed that the promoting effects of Fe3+/Zn2+ on microbial growth and metabolism were highest for 3 mg/L Fe3+ and 2 mg/L Zn2+, followed by 2 mg/L Zn2+, and lowest at 3 mg/L Fe3+. Compared to BTF in the absence of Fe3+ and Zn2+, the average CB elimination capacity and removal efficiency in the presence of Fe3+ and Zn2+ increased from 61.54 to 65.79 g/(m3?hr) and from 80.93% to 89.37%, respectively, at an EBRT of 60 sec. The average removal efficiency at EBRTs of 60, 45, and 32 sec increased by 2.89%, 5.63%, and 11.61%, respectively. The chemical composition (proteins (PN), polysaccharides (PS)) and functional groups of the biofilm were analysed at 60, 81, and 95 day. Fe3+ and Zn2+ significantly enhanced PN and PS secretion, which may have promoted CB adsorption and biodegradation. High-throughput sequencing revealed the promoting effect of Fe3+ and Zn2+ on bacterial populations. The combination of Fe3+ and Zn2+ with rhamnolipids was an efficient method for improving CB biodegradation in BTFs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号