首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
  国内免费   3篇
安全科学   2篇
环保管理   39篇
综合类   25篇
基础理论   3篇
污染及防治   16篇
评价与监测   4篇
社会与环境   6篇
灾害及防治   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   12篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   11篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
1.
Infiltration basins are frequently used for stormwater drainage. Because stormwater is polluted in highly toxic compounds, assessment of pollution retention by infiltration basins is necessary. Indeed, if basins are not effective in trapping pollution, deep soil and groundwater may be contaminated. This study's objective is to investigate soil pollution in infiltration basins: spatial distribution of soil pollution, optimisation of the number of soil samples and a contamination indicator are presented. It is part of a global project on long-term impact of stormwater infiltration on groundwater. Soil sampling was done on a basin in suburban Lyon (France). Samples were collected at different depths and analysed for nutrients, heavy metals, hydrocarbons and grain size. Pollutant concentrations decrease rapidly with depth while pH, mineralisation and grain size increase. Sustainable metal concentrations are reached at a 30-cm depth, even after 14 years of operation; hydrocarbon pollution is deeper. Principal component analysis shows how pollutants affect each level. The topsoil is different from other levels. Three specifically located points are enough to estimate the mass of pollution trapped by the basin with a 26% error. The proposed contamination indicator is calculated using either average level concentrations or maximum level concentrations. In both cases, the topsoil layer appears polluted but evaluation of lower levels is dependent on the choice of input concentrations.  相似文献   
2.
居住小区建设的不断发展在缓解城市居住问题的同时,也给城市环境带来了一系列的负面效应,而减轻这些负效应的关键就在于尽可能的减少小区的不透水地表面积以使地表径流量得到消减。道路作为居住区地表的重要组成部分,在解决上述问题中应当重点考虑。本文以南京市桌新建居住区为例,从减少道路面积和改变地面铺装方式两个角度来寻找减少小区内部不透水铺装面积的方法,并估算了由此所能消减的地表径流量。根据实例分析可知,通过这两种方法可以切实有效的减少小区不透水面积进而减少雨水的径流量。  相似文献   
3.
以铁岭市柴河水库上游集水区域为研究对象,利用铁岭市柴河堡水文站降雨时节实测的暴雨径流数据、泥沙数据、污染物浓度数据进行分析,侧重研究降雨时节暴雨径流量与主要污染物浓度及污染物瞬时流失量之间的关系,以期为柴河流域农业非点源污染控制提供参考。研究结果表明:暴雨期内,非点源污染物浓度及瞬时流失量与径流峰值几乎同步出现,它们之间存在着非常密切的关系。  相似文献   
4.
BP神经网络在流溪河水库径流量预测中的应用   总被引:2,自引:0,他引:2  
流溪河水库是广州市的主要饮用水源地,所属地区降雨量年际变化大,不利于水资源的优化配置。对流溪河水库径流量进行预测研究,可为其水资源的优化配置提供科学依据。目前人工神经网络(ANN)技术在水文序列模拟预测中有较多的应用,本文根据流溪河水库1959~2000年水文数据,利用BP神经网络对径流量进行预测,从模型检验结果看,所建模型有较好的拟合效果和预测精度,说明神经网络在预测径流量方面有良好的实用性。  相似文献   
5.
雨水径流污染是城市面源污染的主要形式,通过对镇江市城区2011年10场降雨径流水质监测,分析了镇江市城区降雨径流水质。结果表明,镇江市城区降雨径流存在一定污染,直接排入城市地表水体会对其造成污染。其主要污染指标为COD、BOD5、NH3-N、TP和总悬浮颗粒物,重金属含量较低,基本不存在重金属污染。各种不同类型雨水径流水质污染程度差异较大,天然降雨、屋面径流,大市口路面径流水质相对较好,基本能达到Ⅲ或Ⅳ类水体的水质标准;泵站、排口径流、河道径流污染较重,大多属于超Ⅴ类水体;南门大街路面径流污染最为严重,部分水质指标接近工业废水。  相似文献   
6.
Pesticide use in agriculture can cause undesirable effects on humans and the natural environment. One of the objectives of integrated agriculture is the elimination or reduction of possible sources of environmental pollution such as pesticides. To achieve this objective, farmers need a method to assist them in estimating the environmental impact of pesticide use. This paper addresses a two-part question: what factors should be taken into consideration to assess pesticide environmental impact, and how can impact be quantified? As the environmental impact of a pesticide depends on its dispersion in the environment and on its toxicological properties, the literature on these topics is reviewed to address the first part of the question. To address the second part of the question, six recent approaches to assess the impact of pesticides on the environment are compared regarding choice, transformation and aggregation of input parameters. The use of simulation models to assess environmental impact is discussed.  相似文献   
7.
ABSTRACT: A comprehensive mathematical model (Urban Wastewater Management Model) has been developed to continuously simulate time-varying wastewater flows and qualities in complex metropolitan combined sewerage systems. The model serves three functions: (1) assessment of existing or planned system performance in relation to other wastewater discharges in either a metropolitan or river basin area; (2) determination of the optium operation or automatic control of existing or planned systems during rainstorms; and (3) determination of the most economically feasible combination of design alternatives for improving or expanding existing systems to meet specified performance criteria. The model provides an efficient engineering tool for evaluating and controlling pollutant discharges from combined sewerage systems (including treatment plants) to receiving waters, while considering the time and spacial variations of rainfall and dry-weather flows and qualities as well as economic constraints.  相似文献   
8.
Paired water samples were simultaneously activated from two different vertical positions within the approach section of a flow-control structure to determine the effect of sample intake position on nonpoint runoff parameter concentrations and subsequent event loads. Suspended solids (SS), total phosphorus (TP) and organic plus exchangeable nitrogen [(Or+Ex)-N] were consistently higher throughout each runoff event when sampled from the floor of the approach section as opposed to those samples taken at midstage. Dissolved molybdate reactive phosphorus (DMRP) and ammonium (NH4-N) concentrations did not appear to be significantly affected by the vertical difference in intake position. However, the nitrate plus nitrite nitrogen [(NO3+NO2)-N] concentrations were much higher when sampled from the midstage position.Although the concentration differences between the two methods were not appreciable, when evaluated in terms of event loads, discrepancies were evident for all parameters. Midstage sampling produced event loads for SS, TP, (Or + Ex)–N, DMRP, NH4-N, and (NO3+NO2)-N that were 44,39,35,80,71, and 181%, respectively, of floor sampling loads. Differences in loads between the two methods are attributed to the midstage position, sampling less of the bed load. The correct position will depend on the objective; however, such differences should be recognized during the design phase of the monitoring program.This work was supported by the Soil Science Department, College of Agriculture and Life Sciences, University of Wisconsin-Madison, and by the U.S. Environmental Protection Agency, Region V., Chicago, Illinois (Grant No. G005139-01).  相似文献   
9.
In the extremely arid (∼150 mm yr−1) eastern Canary Islands of Lanzarote, Fuerteventura and La Graciosa, agriculture has been sustained for decades by a traditional runoff-capture (RC) farming system known as “gavias”. Although the main goal of these systems is to increase water supply for crops, making unnecessary conventional irrigation, a secondary and equally important factor is that this system allows for sustainable agricultural production without addition of chemical or organic fertilizers. A field study was conducted to assess the impact of long-term agriculture (>50 yr) on soil fertility and to evaluate key factors affecting the nutrient sustainability of RC agricultural production. Soil fertility and nutrient dynamics were studied through chemical characterization of the arable layer (0-25 cm) of RC agricultural plots, adjacent natural soils (control) not affected by runoff and cultivation, and sediments contributed by a series of RC events. Results showed that RC soils have enhanced fertility status, particularly because they are less affected by salinity and sodicity (mean electrical conductivity = 1.8 dS m−1 vs. 51.0 dS m−1 in control soils; mean exchangeable sodium percentage = 11.1% vs. 30.6% in control soils), and have higher water and nutrient holding capacities (mean clay plus silt contents ≈87% vs. 69% in control soils). In general, sediments transported with the runoff and deposited in RC plots (average sediment yield ≈ 46 ton ha−1 yr−1), contain sufficient nutrients to prevent a progressive reduction of essential plant nutrients below natural levels in spite of nutrient uptake and removal by the harvested crop. Average additions of nitrogen, phosphorus and potassium with the runoff sediments were 33.6, 35.3 and 48.8 kg ha−1 yr−1, respectively. Results of this study show how a crop production system can be sustained in the long term by natural hydrological and biogeochemical catchment processes. This system maintains a nutrient balance that is not based on energy-intensive inputs of fertilizers, but is integrated in natural nutrient cycling processes, unlike other tropical farming agroecosystems.  相似文献   
10.
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65–85% and sedimentation by 58–69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号