首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   9篇
  国内免费   1篇
环保管理   1篇
综合类   4篇
基础理论   70篇
污染及防治   2篇
评价与监测   1篇
社会与环境   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   5篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   10篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
排序方式: 共有80条查询结果,搜索用时 312 毫秒
1.
Abstract:  We examined factors that may independently or synergistically contribute to amphibian population declines. We used epidemiologic case–control methodology to sample and analyze a large database developed and maintained by the Arizona Game and Fish Department that describes historical and currently known ranid frog localities in Arizona, U.S.A. Sites with historical documentation of target ranid species ( n = 324) were evaluated to identify locations where frogs had disappeared during the study period (case sites) and locations where frog populations persisted (control sites). Between 1986 and 2003, 117 (36%) of the 324 sites became case sites, of which 105 were used in the analyses. An equal number of control sites were sampled to control for the effects of time. Risk factors, or predictor variables, were defined from environmental data summarized during site surveys and geographic information system data layers. We evaluated risk factors with univariate and multifactorial logistic-regression analyses to derive odds ratios (OR). Odds for local population disappearance were significantly related to 4 factors in the multifactorial model. Disappearance of frog populations increased with increasing elevation (OR = 2.7 for every 500 m, p < 0.01). Sites where disappearances occurred were 4.3 times more likely to have other nearby sites that also experienced disappearances (OR = 4.3, p < 0.01), whereas the odds of disappearance were 6.7 times less (OR = 0.15, p < 0.01) when there was a source population nearby. Sites with disappearances were 2.6 times more likely to have introduced crayfish than were control sites (OR = 2.6, p = 0.04). The identification of factors associated with frog disappearances increases understanding of declines occurring in natural populations and aids in conservation efforts to reestablish and protect native ranids by identifying and prioritizing implicated threats.  相似文献   
2.
Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large‐scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease‐free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease‐associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species. Intervenciones para Reducir el Riesgo de Extinción en Anfibios Amenazados por la Quitridiomicosis  相似文献   
3.
Accurate trend estimates are necessary for understanding which species are declining and which are most in need of conservation action. Imperfect species detection may result in unreliable trend estimates because this may lead to the overestimation of declines. Because many management decisions are based on population trend estimates, such biases could have severe consequences for conservation policy. We used an occupancy‐modeling framework to estimate detectability and calculate nationwide population trends for 14 Swiss amphibian species both accounting for and ignoring imperfect detection. Through the application of International Union for Conservation of Nature Red List criteria to the different trend estimates, we assessed whether ignoring imperfect detection could affect conservation policy. Imperfect detection occurred for all species and detection varied substantially among species, which led to the overestimation of population declines when detectability was ignored. Consequently, accounting for imperfect detection lowered the red‐list risk category for 5 of the 14 species assessed. We demonstrate that failing to consider species detectability can have serious consequences for species management and that occupancy modeling provides a flexible framework to account for observation bias and improve assessments of conservation status. A problem inherent to most historical records is that they contain presence‐only data from which only relative declines can be estimated. A move toward the routine recording of nonobservation and absence data is essential if conservation practitioners are to move beyond this toward accurate population trend estimation.  相似文献   
4.
The objective of this study was to determine the acute toxicity of some pesticides used in irrigated rice farming to Lithobates catesbeianus tadpoles. The LC50-96h for commercial formulations containing bentazon, penoxsulam, vegetable oil, permethrin and carbofuran, separately and their mixtures, were determined at the proportions commonly used in the field. The limits of risk concentrations of these products for the studied species were also established. The LC50-96h for tadpoles was 4,530 mg L?1 for bentazon; 7.52 mg L?1 for penoxsulam + 145.66 mg L?1 of vegetable oil; 81.57 mg L?1 for vegetable oil; 0.10 mg L?1 for permethrin; 29.90 mg L?1 for carbofuran (active ingredients), and 38.79 times the dose used in the field for the mixture of these products. The environmental risk was determined only for permethrin, and care should be taken when using the vegetable oil.  相似文献   
5.
Forest management often represents a balance between social, economic, and ecological objectives. In the eastern United States, numerous studies have established that terrestrial salamander populations initially decline in abundance following timber harvest, yet the large‐scale and long‐term consequences are relatively unknown. We used count data from terrestrial survey points to examine the relation between salamander abundance and historic timber harvest while accounting for imperfect detection of individuals. Overall, stream‐ and terrestrial‐breeding salamanders appeared to differ by magnitude of population decline, rate of population recovery, and extent of recolonization from surrounding forest. Specifically, estimated abundance of both species groups was positively associated with stand age and recovery rates were predicted to increase over time for red‐legged salamanders (Plethodon shermani) and decrease in stream‐breeding species. Abundance of stream‐breeding salamanders was predicted to reach a peak by 100 years after timber harvest, and the population growth rate of red‐legged salamanders was predicted to undergo a significant increase 100 years after harvest. Estimated abundance of stream‐breeding salamanders in young forest stands was also negatively associated with the distance to adjacent forest, a result that suggests immigration has a role in the recovery of these species. Our results indicate that salamander abundance in young forest stands may be only modestly lower than in more mature forest but that full recovery from timber harvest may take a substantial amount of time and that species life history may affect patterns of recovery. Historia de Vida como un Vaticinador de la Tasa de Recuperación de una Salamandra a la Colecta de Madera en los Bosques del Sur de los Apalaches, E.U.A  相似文献   
6.
Abstract:  Species conservation risk assessments require accurate, probabilistic, and biologically meaningful maps of population distribution. In patchy populations, the reasons for discontinuities are not often well understood. We tested a novel approach to habitat modeling in which methods of small area estimation were used within a hierarchical Bayesian framework. Amphibian occurrence was modeled with logistic regression that included third-order drainages as hierarchical effects to account for patchy populations. Models including the random drainage effects adequately represented species occurrences in patchy populations of 4 amphibian species in the Oregon Coast Range (U.S.A.). Amphibian surveys from other locations within the same drainage were used to calibrate local drainage-scale effects. Cross-validation showed that prediction errors for calibrated models were 77% to 86% lower than comparable regionally constructed models, depending on species. When calibration data were unavailable, small area and regional models performed similarly, although poorly. Small area estimation models complement wildlife ecology and habitat studies, and can help managers develop a regional picture of the conservation status for relatively rare species.  相似文献   
7.
Abstract: Successful protection of biodiversity requires increased understanding of the ecological characteristics that predispose some species to endangerment. Theory posits that species with polymorphic or variable coloration should have larger distributions, use more diverse resources, and be less vulnerable to population declines and extinctions, compared with taxa that do not vary in color. We used information from literature on 194 species of Australian frogs to search for associations of coloration mode with ecological variables. In general, species with variable or polymorphic color patterns had larger ranges, used more habitats, were less prone to have a negative population trend, and were estimated as less vulnerable to extinction compared with nonvariable species. An association of variable coloration with lower endangerment was also evident when we controlled statistically for the effects of range size. Nonvariable coloration was not a strong predictor of endangerment, and information on several characteristics is needed to reliably identify and protect species that are prone to decline and may become threatened by extinction in the near future. Analyses based on phylogenetic‐independent contrasts did not support the hypothesis that evolutionary transitions between nonvariable and variable or polymorphic coloration have been accompanied by changes in the ecological variables we examined. Irrefutable demonstration of a role of color pattern variation in amphibian decline and in the dynamics and persistence of populations in general will require a manipulative experimental approach.  相似文献   
8.
Abstract: Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land‐use and habitat conservation is challenging, and well‐informed land‐use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high‐quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state‐level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool‐breeding amphibians. We also found that species with different life‐history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer‐lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.  相似文献   
9.
Abstract:  As part of an overall biodiversity crisis many amphibian populations are in decline throughout the world. Numerous causes have been invoked to explain these declines. These include habitat destruction, climate change, increasing levels of ultraviolet radiation, environmental contamination, and the introduction of non-native species and diseases. Several types of pathogens have been implicated in contributing to amphibian population declines: viruses, bacteria, oomycetes, and fungi. One particular fungus, the chytridiomycete Batrachochytrium dendrobatidis may have caused amphibian population declines in several regions. This pathogen causes chytridiomycosis, which is fatal to newly metamorphic and adult amphibians of certain species. We present experimental evidence that larval stages may also be susceptible to exposure to Batrachochytrium . There was, however, differential sensitivity to B. dendrobatidis in larvae we examined. In laboratory experiments, larval western toads (  Bufo boreas ) exposed to B. dendrobatidis experienced increased mortality and behaviors that suggested they were affected by exposure compared with unexposed control tadpoles. Larvae of Cascades frogs (  Rana cascadae ), bullfrogs ( R. catesbeiana ), and Pacific treefrogs ( Hyla regilla ) did not die after exposure to Batrachochytrium and appeared to behave normally. R. cascadae larvae exposed to B. dendrobatidis , however, showed an increase incidence in mouthpart abnormalities, a characteristic effect of chytridiomycosis, compared with unexposed controls. These results show that Batrachochytrium can negatively affect some species of amphibians at the larval stage and not others. The implications of interspecific variation in susceptibility to fungal infection are broad.  相似文献   
10.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock‐on effects for community structure. Based on our results, salt may be an effective field‐based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号