首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   2篇
污染及防治   3篇
社会与环境   1篇
  2013年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Abstract:  Amazon beef and soybean industries, the primary drivers of Amazon deforestation, are increasingly responsive to economic signals emanating from around the world, such as those associated with bovine spongiform encephalopathy (BSE, "mad cow disease") outbreaks and China's economic growth. The expanding role of these economic "teleconnections" (coupled phenomena that take place in distant places on the planet) led to a 3-year period (2002–2004) of historically high deforestation rates. But it also increases the potential for large-scale conservation in the region as markets and finance institutions demand better environmental and social performance of beef and soy producers. Cattle ranchers and soy farmers who have generally opposed ambitious government regulations that require forest reserves on private property are realizing that good land stewardship—including compliance with legislation—may increase their access to expanding domestic and international markets and to credit and lower the risk of "losing" their land to agrarian reform. The realization of this potential depends on the successful negotiation of social and environmental performance criteria and an associated system of certification that are acceptable to both the industries and civil society. The foot-and-mouth eradication system, in which geographic zones win permission to export beef, may provide an important model for the design of a low-cost, peer-enforced, socioenvironmental certification system that becomes the mechanism by which beef and soy industries gain access to markets outside the Amazon.  相似文献   
2.
Background, Aim and Scope The cow-calf (Bos taurus) industry in subtropical United States and other parts of the world depends almost totally on grazed pastures. Establishment of complete, uniform stand of bahiagrass (BG) in a short time period is important economically. Failure to obtain a good BG stand early means increased encroachment of weeds and the loss of not only the initial investment costs, but production and its cash value. Forage production often requires significant inputs of lime, N fertilizer, and less frequently of P and K fertilizers. Domestic sewage sludge or biosolids, composted urban plant debris, waste lime, phosphogypsum, and dredged materials are examples of materials that can be used for fertilizing and liming pastures. Perennial grass can be a good choice for repeated applications of sewage sludge. Although sewage sludge supply some essential plant nutrients and provide soil property-enhancing organic matter, land-application programs still generate some concerns because of possible health and environmental risks involved. The objectives of this study were to evaluate the cumulative and residual effects of repeated applications of sewage sludge on (i) bahiagrass (BG, Paspalum notatum Flügge) production over years with (1997–2000) and without (2001–2002) sewage sludge applications during a 5-yr period, and (ii) on nutrients status of soil that received annual application of sewage sludge from 1997 to 2000 compared with test values of soils in 2002 (with no sewage sludge application) in South Florida.Methods The field experiment was conducted at the University of Florida Agricultural Research and Education Center, Ona, FL (27o26’N, 82o55’W) on a Pomona fine sandy soil. With the exception of the control, BG plots received annual sewage sludge and chemical fertilizers applications to supply 90 or 180 kg total N ha–1 yr–1 from 1997 to 2000. Land application of sewage sludge and fertilizer ceased in 2001 season. In early April 1998, 1999, and 2000, plots were mowed to 5-cm stubble and treated with the respective N source amendments. The experimental design was three randomized complete blocks with nine N-source treatments: ammonium nitrate (AMN), slurry biosolids of pH 7 (SBS7), slurry biosolids of pH 11 (SBS11), lime-stabilized cake biosolids (CBS), each applied to supply 90 or 180 kg N ha–1, and a nonfertilized control (Control). Application rates of sewage sludge were calculated based on the concentration of total solids in materials as determined by the American Public Health Association SM 2540G method and N in solids. The actual amount of sewage sludge applications was based on the amount required to supply 90 and 180 kg N ha–1. Sewage sludge materials were weighed in buckets and uniformly applied to respective BG plots. Soil samples were collected in June 1997, June 1999, and in June 2002 from 27 treatment plots. In 1997 and 1999, soil samples were collected using a steel bucket type auger from the 0- to 20-, 20- to 40-, 40- to 60-, and 60- to 100-cm soil depths. Forage was harvested on 139, 203, 257, and 307 day of year (DOY) in 1998; 125, 202, 257, and 286 DOY in 1999; 179, 209, 270, and 301 DOY in 2000; and on 156 and 230 DOY in 2002 (no sewage sludge applications) to determine the residual effect of applied sewage sludge following repeated application. Forage yield and soils data were analyzed using analysis of variance (PROC ANOVA) procedures with year and treatment as the main plot and sub-plot, respectively. As a result of significant year effects on forage yield, data were reanalyzed annually (i.e., 1998, 1999, 2000, and 2002).Results and Discussion All sewage sludges used in this study were of class B in terms of USEPA’s pathogens and pollutant concentration limit. Pathogen and chemical composition of the class B sewage sludge that were used in the study were all in compliance with the USEPA guidelines. The liquid sludge (SBS11) had the lowest fecal coliform counts (0.2 x 106 CFU kg–1) while the cake sewage sludge (CBS) had the greatest coliform counts of 178 x 106 CFU kg–1. The fecal coliform counts for SBS7 was about 33 x 106 CFU kg–1. Average soil test values in June 2002 exhibited: i) decrease in TIN (NO3-N + NH4-N), TP, K, Ca, Mg, Mn, and Fe; and ii) slight increase in Zn and Cu when compared with the June 1997 soil test results. The overall decrease in soil test values in 2002 might be associated with nutrient cycling and plant consumption. Although the average BG forage yield in 2002 (2.3 ± 0.7 Mg ha–1) was slightly lower than in 2000 (3.5 ± 1.2 Mg ha–1), yield differences in 2002 between the control (1.2 + 0.2 Mg ha–1) and treated plots (2.3 ± 0.5 Mg ha–1 to 3.3 ± 0.6 Mg ha–1) were indicative of a positive residual effect of applied sewage sludge. This study has shown that excessive build up of plant nutrients may not occur in beef cattle pastures that repeatedly received sewage sludge while favoring long-term increased forage yield of BG. All sources of N (sewage sludge and AMN) gave better forage production than the unfertilized control during years with sewage sludge application (1997–2000) and also during years with no sewage sludge application (2001–2002). The favorable residual effects of applied sewage sludge in 2002 may have had received additional boost from the amount of rainfall in the area.Conclusions Repeated applications of sewage sludge indicate no harmful effects on soil quality and forage quality. Our results support our hypothesis that repeated land application of sewage sludge to supply 90 and 180 kg N ha–1 would not increase soil sorption for nutrients and trace metals. Results have indicated that the concentrations of soil TIN and TP declined by almost 50% in plots with different nitrogen sources from June 1997 to June 2002 suggesting that enrichment of nitrogen and phosphorus is insignificant. The concentrations of soil nitrogen and phosphorus in 2002 following repeated application of sewage sludge were far below the contamination risk in the environment. The residual effect of these sewage sludge over the long term can be especially significant in many areas of Florida where only 50% of the 1 million ha of BG pastures are given inorganic nitrogen yearly.Recommendation and Outlook Successive land application of sewage sludge for at least three years followed by no sewage sludge application for at least two years may well be a good practice economically because it will boost and/or maintain sustainable forage productivity and at the same time minimize probable accumulation of nutrients, especially trace metals. Consecutive applications of sewage sludge may result in build up of some trace metals in some other states with initial high metallic content, but in this study, no detrimental effects on soil chemical properties were detected. The possibilities for economically sound application strategies are encouraging, but more and additional research is required to find optimal timing and rates that minimizes negative impacts on soil quality in particular or the environment in general. For proper utilization of sewage sludge, knowledge of the sewage sludges’ composition, the crop receiving it, are absolutely crucial, so that satisfactory types and rates are applied in an environmentally safe manner. There is still much to be learned from this study and this investigation needs to continue to determine whether the agricultural and ecological objectives are satisfied over the longer term.  相似文献   
3.
The concentrations of cadmium, chromium, copper, lead, zinc, manganese, iron, cobalt, and nickel in some brands of canned beef in Nigerian markets were determined by atomic absorption spectrophotometry. The mean concentration ranges for these metals in mg?kg?1 were 0.02–0.37 for Cd, <0.04–0.75 for Cr, 1.1–2.4 for Cu, <0.001–1.5 for Pb, 1.1–8.0 for Zn, <0.04–0.57 for Mn, 13.8–28.8 for Fe, 0.05–0.26 for Co, and 0.8–5.9 for Ni. The estimated dietary intake of metals from these products did not indicate any risk since the values were far below the permissible dietary intakes.  相似文献   
4.
Analysis of 2378-TCDD and 2378-TCDF on the ppq-level in foods with high fat content is described. The migration over twelve days of 2378-TCDD, 2378-TCDF and 1278-TCDF from bleached paperboard cartons into whole milk was found to be exponential with time. A survey of selected fatty foods shows the presence of 2378-TCDD and 2378-TCDF in foodstuff.  相似文献   
5.
BACKGROUND, AIMS AND SCOPE: Dredged materials because of its variable but unique physical and chemical properties are often viewed by society and regulators as pollutants, but many have used these materials in coastal nourishment, land or wetland creation, construction materials, and for soil improvement as a soil amendment. Environmental impact assessment is an important pre-requisite to many dredging initiatives. The ability to reuse lake-dredge materials (LDM) for agricultural purposes is important because it reduces the need for off-shore disposal and provides an alternative to disposal of the materials in landfills. Additional research on disposal options of dredged materials are much needed to supply information on criteria testing and evaluation of the physical and chemical impacts of dredged materials at a disposal site, as well as information on many other aspects of dredging and dredged material disposal. While preliminary efforts are underway to provide information to establish criteria for land disposal, testing procedures for possible land disposal of contaminated sediments are still in their developing stage. The objective of this study (Part 1) was to quantify the effect of applied LDM from Lake Panasoffkee (LP), Florida on soil physico-chemical properties (soil quality) at the disposal site. This series of two papers aims at providing assessment of the efficacy of lake-dredged materials from LP especially its implication to environment (soil quality, Part 1) and agriculture (forage quality and pasture establishment, Part 2). METHODS: The experimental treatments that were evaluated consisted of different ratios of natural soil (NS) to LDM: LDM0 (100% NS:0% LDM); LDM25 (75% NS:25% LDM); LDM50 (50% NS:50% LDM); LDM75 (25% NS:75% LDM); and LDM100 (0% NS:100% LDM). Field layout was based on the principle of a completely randomized block design with four replications. The Mehlich 1 method (0.05 N HCl in 0.025 N H2SO4) was used for chemical extraction of soil. Soil P and other exchangeable cations (Ca, Mg, K, Al, and Fe) were analyzed using an Inductively Coupled Plasma (ICP) Spectroscopy. The effects of dredged materials addition on soil quality and compaction were analyzed statistically following the PROC ANOVA procedures. RESULTS AND DISCUSSION: Sediments that were dredged from LP have high CaCO3 content (82%) and when these materials were incorporated into existing topsoil they would have the same favorable effects as liming the field. Thus, sediments with high CaCO3 may improve the physical and chemical conditions of subtropical sandy pastures. The heavy and trace metal contents of LDM were below the probable effect levels (PEL) and threshold effect levels (TEL). Average values for Pb, Zn, As, Cu, Hg, Se, Cd, and Ni of 5.2 +/- 1.3, 7.0 +/- 0.6, 4.4 +/- 0.1, 8.7 +/- 1.2, 0.01 +/- 0.02, 0.02 +/- 0.02, 2.5 +/- 0.1, and 14.6 +/- 6.4 mg kg(-1), respectively, were below the TEL and the PEL. TEL represents the concentrations of sediment-associated contaminants that are considered to cause significant hazards to aquatic organisms, while, PEL represents the lower limit of the range of the contaminant concentrations that are usually or always associated with adverse biological effects. As such, the agricultural or livestock industry could utilize these LDM to produce forages. LDM should be regarded as a beneficial resource, as a part of the ecological system. Addition of LDM had significant (p < or = 0.001) effects on soil physico-chemical properties and soil quality. Compared with the control plots, the soils in plots amended with LDM exhibited: (1) lower degree of soil compaction; (2) an increase in soil pH, Ca, and Mg; (3) decrease in the levels of soil Mn, Cu, Fe, Zn, and Si; and (4) no significant change in the level of Na in the soil. Results have shown the favorable influence that LDM had on soil compaction. The treatment x year interaction effect was not significant, but the average soil compaction varied widely (p < or = 0.001) with LDM application. In 2002 and 2003, soil compaction of plots was lowered significantly as a result of LDM additions. The least compacted soils in 2002 and 2003 were observed from plots with LDM75 with mean soil compaction of 300 x 10(3) and 350 x 10(3) Pa, respectively. CONCLUSION: Beneficial uses of dredged materials from LP, Florida are both economical and environmental. Often these materials can be obtained at little or no cost to the farmers or landowners in south Florida. Environmentally, dredging of sediments that are rich in CaCO3 should restore the 19.4-sq km LP by removing natural sediments from the lake bottom to improve the fishery, water quality, and navigation of the lake. The bottom sediment materials from lakes, river, and navigational channels usually are composed of upland soil enriched with nutrients and organic matter. These materials should be regarded as a beneficial resource to be used productively and not to be discarded as spoil materials. RECOMMENDATION AND OUTLOOK: Land application of LDM from LP may not only provide substantial benefits that will enhance the environment, community, and society in south Florida, but also in other parts of the world especially those areas having tropical and subtropical climate with forage-based beef cattle pastures. The heavy and trace metal contents of LDM from LP were below the PEL and TEL. As such, the agricultural or livestock industry could utilize these LDM to produce forages (Part 2 of this study). LDM should be regarded as a beneficial resource, as a part of the ecological system. Further studies are still needed to determine whether the environmental and ecological implications of LDM application are satisfied over the longer term.  相似文献   
6.
牛肉生产及其资源与环境问题   总被引:2,自引:0,他引:2  
以肉牛饲养为主的现代畜牧业,大多基于生态效率低下的浓厚饲料多给型生产方式,致使饲料用粮多,己占全球粮食总产量的40%,同时引发相当严重的水土污染,并加剧全球温室效应。本文概论世界牛肉生产及相关资源与环境问题,分析相应环境影响评价方法,进而针对中国国情,探讨适合于中国可持续发展的牛肉生产系统。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号