首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   9篇
  国内免费   37篇
安全科学   9篇
废物处理   2篇
环保管理   11篇
综合类   52篇
基础理论   8篇
污染及防治   16篇
评价与监测   2篇
社会与环境   1篇
灾害及防治   1篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   8篇
  2008年   2篇
  2007年   8篇
  2006年   10篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有102条查询结果,搜索用时 265 毫秒
1.
The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept.Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH4 yield obtained was 326 ± 46 l/kg VSfeed at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VSfeed when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VSfeed), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops.  相似文献   
2.
北京餐饮源排放细粒子理化特征及其对有机颗粒物的贡献   总被引:10,自引:6,他引:4  
温梦婷  胡敏 《环境科学》2007,28(11):2620-2625
调研了北京餐饮业发展现状,通过在线监测、采样分析等手段研究北京4家不同烹调方式的餐馆所排放颗粒物的质量浓度、粒径分布、形貌特征、化学组分,并初步估算餐饮源排放细粒子对北京细粒子中颗粒有机物的贡献.结果表明,餐馆的原料、烹饪过程、油烟去除装置以及客流量都会影响餐馆所排放颗粒物的物理、化学性质.样本餐馆营业期间排放颗粒物PM2 .5质量浓度是当日环境大气PM2 .5质量浓度的8~35倍,PM1 .0在PM2 .5的质量浓度中约占50%~85%.餐饮源排放颗粒物多以固态和液态颗粒物形貌存在,化学组分质量百分数由多到少依次是有机物、无机离子和元素碳,分别占到PM2 .5质量浓度的70%左右、5%~11%和小于2%.初步估计结果表明,北京餐饮源排放细粒子对有机颗粒物的贡献和交通源的排放相当,成为北京细粒子有机颗粒物的主要来源之一.认识餐饮源排放颗粒物的理化性质,可以为改善北京空气质量和保证居民身体健康提供数据支持.  相似文献   
3.
烹饪油烟颗粒物粒径分布与扩散特性研究有助于解析其对室内空气质量和居民健康的影响,采用电子低压撞击器(ELPI)实时监测了油烟机开启和关闭状态下,模拟烹饪油烟发生处和3 m外位置处,0.03~10μm范围内油烟颗粒数浓度和质量浓度随粒径分布.油烟颗粒主要以655 nm以下的细颗粒为主.油烟机能够显著降低室内油烟浓度,开启油烟机后,油烟发生处颗粒数浓度从2.8×106个·cm-3降低到2.3×105个·cm-3,PM2.5(空气动力学直径≤2.5μm的颗粒)质量浓度从85.9 mg·m-3降低到6.2 mg·m-3.油烟机对PM10的净化效率高于PM2.5.油烟迅速从发生处扩散到3 m外,无通风状态下,总颗粒数浓度衰减达65%,PM2.5质量浓度衰减达75%.计算流体动力学(CFD)模拟了油烟机对油烟PM2.5质量浓度场扩散分布影响.红外摄像仪监测了油烟温度场分布扩散,以扇形向外扩散,伴随着油烟温度梯度降低.  相似文献   
4.
为了降低油烟对环境的污染,分析了油烟中的主要污染物成分及油烟对人体健康的几种危害。讨论了五种油烟净化技术:惯性分离法、过滤分离法、液体洗涤法、静电沉积法、复合技术。分析了液体洗涤油烟净化技术的原理、水循环利用时对洗涤废液进行的油水分离,提出了采用流场分析喷淋,以了解其流场的特性。结果表明,采用液体洗涤法去除油烟效率高,安全可靠。  相似文献   
5.
Tuna cooking juice from a Tunisian tuna-processing unit has a high level of polluting load: chemical oxygen demand (COD) is comprised between 4 and 20 g L−1, nitrogen kjedahl (NK) between 0.6 and 3 g L−1 and dry matter between 120 and 160 g L−1. The juice has thus to be treated before being rejected into the environment. This paper considers the nanofiltration (NF) of these concentrated organic/inorganic mixtures using an AFC 30 (NF) membrane. The work focusses on the effect of organic and inorganic matters on the permeate flux and rejections of these matters. For this purpose, mixtures of salt and organic pollution (COD), used as model solutions, were prepared by the dilution of a typical industrial tuna cooking juice. The permeate flux was found to decrease when salt and organic matter concentrations increase. The recovery rate in organic matter decreases with increasing salt or organic matter content and the recovery rate of salt decreases when the COD concentration increases.  相似文献   
6.
Cooking fumes contain compounds that may give rise to oxidative stress and mutations when inhaled. The aim of this study was to evaluate if cooking fumes from frying of bacon induce oxidative stress by measurement of urinary 8-oxo-7,8-dihydro-2 deoxyguanosine, a marker of oxidatively damaged DNA. Three non-smoking women fried bacon for 3 h. Urine samples were taken as early morning void at the same time on four days; the morning before frying, the morning after first frying, the morning after three days of frying and one week after first urine sample. 8-Oxo-7,8-dihydro-2 deoxyguanosine, 1-hydroxypyrene and 2-hydroxyphenanthrene, metabolites of polycyclic aromatic hydrocarbons, were measured by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). 8-Oxo-7,8-dihydro-2 deoxyguanosine correlated weakly with concentrations of 1-hydroxypyrene (r = 0.31, p = 0.042), but it did not correlate with 2-hydroxyphenanthrene (r = ?0.074; p = 0.64). Average urinary 8-oxo-7,8-dihydro-2 deoxyguanosine concentrations increased from the day before frying (16.3 ± 4.2 nmol/L) to the third day of frying (26.2 ± 10.2 nmol/L), although not statistically significantly. Our pilot study shows that frying of bacon may result in increased oxidative stress which further emphasises the possible carcinogenic potential of cooking fumes.  相似文献   
7.
Singapore has pledged to attain 7–11% Business-As-Usual carbon emissions reduction by 2020. About 19% of CO2 contribution stemmed from road transport in 2005. Commercial vehicles, which uses mainly diesel, consumed 695 million litres diesel in 2012. An estimated 115,585 tonnes or 127 million litres cooking oils (derived from seeds/fruits) were consumed in 2010, in which the bulk of used cooking oil is re-incorporated into the food preparation process while only a small amount is being recycled into biodiesel or disposed into the sewerage. Nevertheless, the present research reveals that biodiesel derived from spent cooking oil has potential to be a viable fuel supplement. Surveys were carried out involving three market segments – suppliers, processors and end-users – to identify the barriers and obstacles in mass production of biodiesel. A key enabler of biodiesel as a fuel supplement towards a greener environment lies in government mandate/policies in promoting greater biodiesel usage.  相似文献   
8.
邯钢焦化厂1#~4#焦炉烟尘治理   总被引:1,自引:0,他引:1  
介绍了邯钢焦化厂1^#~4^#焦炉采用布袋式除尘的烟尘治理方案,装煤和出焦除尘工艺流程及部分改进措施。  相似文献   
9.
餐饮油烟是大气有机颗粒物的重要来源之一.本研究在深圳市内选择了西餐、茶餐厅、职工食堂和韩式料理这4种类型的餐馆,通过对这4类餐厅的外场采样,分析各类型餐厅油烟中有机颗粒物的化学组成,筛选了餐饮油烟污染源的有机特征组分.结果表明,各餐馆排放的PM_(2.5)中,有机物占60%以上.在所有定量的有机组分之中,脂肪酸含量最高,其次是二元羧酸和正构烷烃,而多环芳烃、甾醇和单糖等有机组分的含量较低.颗粒物的有机组成特征受到菜系的影响,西餐厅和韩式料理排放脂肪酸、正构烷烃和多环芳烃等有机物含量较高,但却排放了低含量的甾醇和单糖,茶餐厅和职工食堂则相反.餐饮源颗粒物中Fla/(Fla+Pyr)和LG/(Gal+Man)的比值受菜系影响较小,也区别于其他污染源的特征比值,可以作为餐饮源潜在的示踪物.餐饮源为深圳市大气颗粒物贡献了大量的脂肪酸和二元羧酸.  相似文献   
10.
Cooking fume produced by oil and food at a high temperature releases large amount of fine particulate matter(PM) which have a potential hazard to human health. This chamber study investigated particle emission characteristics originated from using four types of oil(soybean oil, olive oil, peanut oil and lard) and different kinds of food materials(meat and vegetable). The corresponding emission factors(EFs) of number, mass, surface area and volume for particles were discussed. Temporal variation of size-fractionated particle concentration showed that olive oil produced the highest number PM concentration for the entire cooking process. Multiple path particle dosimetry(MPPD) model was performed to predict deposition in the human respiratory tract. Results showed that the pulmonary airway deposition fraction was the largest. It was also found that particles produced from olive oil led to the highest deposition. We strongly recommend minimizing the moisture content of ingredients before cooking and giving priority to the use of peanut oil instead of olive oil to reduce human exposure to PM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号