首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  国内免费   4篇
环保管理   1篇
综合类   7篇
基础理论   5篇
  2023年   1篇
  2022年   2篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  1999年   2篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza‐Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land‐use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon‐dense (domed pole forest) areas. New carbon‐based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development.  相似文献   
2.
北方泥炭地是全球重要的碳汇,也是全球变暖最为敏感的区域之一.然而,由于泥炭地表层和亚表层泥炭土碳排放过程对全球变暖的响应过程及机制仍存在一定争议,目前对全球变暖背景下泥炭地碳排放的认识仍存在一定不足.本研究于2019年8月在大兴安岭满归泥炭地采集表层(0~10 cm)和亚表层(15~30 cm)泥炭土进行室内增温模拟有氧培养,测定其矿化速率、有机质性质和水解酶活性.结果表明,表层泥炭土矿化速率在5、15、25℃下培养时((142.8±66.9)~(545.3±30.6)、(575.0±62.1)~(1843.0±547.4)、(888.4±123.9)~(3646.7±167.9)μg·g-1·d-1)均高于亚表层((113.0±41.5)~(367.1±64.1)、(357.4±52.3)~(1122.1±218.8)、(697.1±38.1)~(2336.4±150.6)μg·g-1·d-1),但表层和亚表层矿化作用的温度敏感性不具有显著差异;培养过程中,表层与亚表层泥炭土β-1,4-N-乙酰葡...  相似文献   
3.
刘子刚  王铭  马学慧 《中国环境科学》2012,32(10):1814-1819
根据全国泥炭资源调查的结果, 运用有机质含量、干容重、泥炭储量、泥炭地面积等数据估算中国泥炭地有机碳储量,并探讨其碳储存特征.结果表明,我国泥炭地有机碳总储量约15.03亿t.在各省和各气候区分布不均匀,四川省(6.45亿t)和云南省(2.91亿t)泥炭地有机碳储量最丰富,占总储量的62.29%.各气候区中高原湿润区泥炭地有机碳储量最大(7.14亿t),特别是若尔盖高原泥炭地有机碳储量(6.30亿t)占总储量的41.92%.我国泥炭地有机碳密度一般在80~140kg/m3, 最大值为270~360kg/m3,最小值小于80kg/m3,其分布以燕山、太行山至横断山为界,西北部低,东南部高.泥炭地单位面积有机碳储量均值为143.97kg/m2,滇南高原最高,达到637.06kg/m2.区域平均泥炭地有机碳积累强度为208.23 t/km2,若尔盖高原最高达3972.71t/km2.  相似文献   
4.
Abstract: The growing demand for biofuels is promoting the expansion of a number of agricultural commodities, including oil palm (Elaeis guineensis). Oil‐palm plantations cover over 13 million ha, primarily in Southeast Asia, where they have directly or indirectly replaced tropical rainforest. We explored the impact of the spread of oil‐palm plantations on greenhouse gas emission and biodiversity. We assessed changes in carbon stocks with changing land use and compared this with the amount of fossil‐fuel carbon emission avoided through its replacement by biofuel carbon. We estimated it would take between 75 and 93 years for the carbon emissions saved through use of biofuel to compensate for the carbon lost through forest conversion, depending on how the forest was cleared. If the original habitat was peatland, carbon balance would take more than 600 years. Conversely, planting oil palms on degraded grassland would lead to a net removal of carbon within 10 years. These estimates have associated uncertainty, but their magnitude and relative proportions seem credible. We carried out a meta‐analysis of published faunal studies that compared forest with oil palm. We found that plantations supported species‐poor communities containing few forest species. Because no published data on flora were available, we present results from our sampling of plants in oil palm and forest plots in Indonesia. Although the species richness of pteridophytes was higher in plantations, they held few forest species. Trees, lianas, epiphytic orchids, and indigenous palms were wholly absent from oil‐palm plantations. The majority of individual plants and animals in oil‐palm plantations belonged to a small number of generalist species of low conservation concern. As countries strive to meet obligations to reduce carbon emissions under one international agreement (Kyoto Protocol), they may not only fail to meet their obligations under another (Convention on Biological Diversity) but may actually hasten global climate change. Reducing deforestation is likely to represent a more effective climate‐change mitigation strategy than converting forest for biofuel production, and it may help nations meet their international commitments to reduce biodiversity loss.  相似文献   
5.
The drainage of peatland areas for peat extraction,agriculture or bioenergy requires affordable,simple and reliable treatment methods that can purify waters rich in particulates and dissolved organic carbon.This work focused on the optimisation of chemical purification process for the direct dosage of solid metal salt coagulants.It investigated process requirements of solid coagulants and the influence of water quality,temperature and process parameters on their performance.This is the first attempt to provide information on specific process requirements of solid coagulants.Three solid inorganic coagulants were evaluated:aluminium sulphate,ferric sulphate and ferric aluminium sulphate.Pre-dissolved aluminium and ferric sulphate were also tested with the objective of identifying the effects of in-line coagulant dissolution on purification performance.It was determined that the pre-dissolution of the coagulants had a significant effect on coagulant performance and process requirements.Highest purification levels achieved by solid coagulants,even at 30% higher dosages,were generally lower(5%-30%) than those achieved by pre-dissolved coagulants.Furthermore,the mixing requirements of coagulants pre-dissolved prior to addition differed substantially from those of solid coagulants.The pH of the water samples being purified had a major influence on coagulant dosage and purification efficiency.Ferric sulphate(70 mg/L) was found to be the best performing solid coagulant achieving the following load removals:suspended solids(59%-88%),total organic carbon(56%-62%),total phosphorus(87%-90%),phosphate phosphorus(85%-92%) and total nitrogen(33%-44%).The results show that the use of solid coagulants is a viable option for the treatment of peatland-derived runoff water if solid coagulant-specific process requirements,such as mixing and settling time,are considered.  相似文献   
6.
Insights into declines in ecosystem resilience and their causes and effects can inform preemptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services, and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, nonlinear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands known as upland swamps in southeastern Australia. We hypothesized that underground mining (stressor) reduces resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining. After landscape fire, we compared responses of multiple state variables representing ecosystem structure, composition, and function in swamps within the mining footprint with unmined reference swamps. Soil moisture declined without recovery in swamps with mine subsidence (i.e., undermined), but was maintained in reference swamps over 8 years (effect size 1.8). Relative to burned reference swamps, burned undermined swamps showed greater loss of peat via substrate combustion; reduced cover, height, and biomass of regenerating vegetation; reduced postfire plant species richness and abundance; altered plant species composition; increased mortality rates of woody plants; reduced postfire seedling recruitment; and extirpation of a hydrophilic animal. Undermined swamps therefore showed strong symptoms of postfire ecosystem collapse, whereas reference swamps regenerated vigorously. We found that an anthropogenic stressor diminished the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver. Efectos de las interacciones entre los estresantes antropogénicos y las perturbaciones recurrentes sobre la resiliencia y el colapso de los ecosistemas  相似文献   
7.
通过对神农架大九湖泥炭地进行野外调查和长期观测,采用经验公式和实验室分析方法,计算了神农架大九湖泥炭地土壤有机碳含量和有机碳储量,并对2016-2018年神农架大九湖泥炭地的固碳能力特征进行了分析.结果 表明:在0~100 cm深度范围内,神农架大九湖泥炭地土壤有机碳含量的变化范围为282.90~516.10 g/kg...  相似文献   
8.
Boreal peatlands represent a large global carbon pool.The relationships between carbon mineralization,soil temperature and moisture in the permafrost peatlands of the Great Hing'an Mountains,China,were examined.The CO2 emissions were measured during laboratory incubations of samples from four sites under different temperatures(5,10,15,and 20°C) and moisture contents(0%,30%,60%,100% water holding capacity(WHC) and completely water saturated).Total carbon mineralization ranged from 15.51 to 112.92 mg C under the treatments for all sites.Carbon mineralization rates decreased with soil depth,increased with temperature,and reached the highest at 60% WHC at the same temperature.The calculated temperature coefficient(Q10) values ranged from 1.84 to 2.51 with the soil depths and moisture.However,the values were not significantly affected by soil moisture and depth for all sites due to the different peat properties(P 0.05).We found that the carbon mineralization could be successfully predicted as a two-compartment function with temperature and moisture(R2 0.96) and total carbon mineralization was significantly affected by temperature and moisture(P 0.05).Thus,temperature and moisture would play important roles in carbon mineralization of permafrost peatlands in the Great Hing'an Mountains,indicating that the permafrost peatlands would be sensitive to the environment change,and the permafrost peatlands would be potentially mineralized under future climate change.  相似文献   
9.
微生物作为土壤生态系统的重要组成部分,对环境干扰异常敏感,可以反映土壤的健康状况.人类活动导致高寒泥炭土壤面临退化风险,生产力下降、碳汇功能丧失,进而影响土壤微生物的群落结构及多样性.藏猪放牧是我国高海拔藏区一种特有的放牧方式,是导致高寒草甸土壤退化的重要干扰因素之一.应用16S rRNA高通量测序技术对比分析了藏猪放牧干扰和对照(无藏猪放牧)条件下的滇西北高寒草甸泥炭土壤微生物群落结构变化及其对干扰的响应特征.结果表明,藏猪放牧导致土壤微生物α多样性显著降低,且群落结构发生明显变化.高寒草甸泥炭土壤的主要优势菌为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi).与门水平相比,干扰前后土壤微生物在属水平上的差异更明显,其中鞘氨醇单胞菌属(Sphingomonas)和薄层菌属(Hymenobacter)的相对丰度在干扰后的土壤中显著增加,而硝化螺菌属(Nitrospira)和红游动菌属(Rhodoplanes)则显著降低.Venn图分析进一步发现,干扰与对照土壤样品中分别有71和136个核心OTU.干扰条件下的土壤特有微生物主要包括伯克霍德氏菌(Burkholderiales)、假单胞菌(Pseudomonadales)、鞘脂单胞菌(Sphingomonadales)等,这些微生物主要聚集在目水平,可以作为干扰条件下的指示微生物.CCA排序表明,硝化螺菌属和红游动菌属的微生物对含水率、速效磷、有机质等土壤环境变量的响应较为敏感.该研究结果为揭示高寒草甸泥炭土壤退化与微生物群落结构及多样性之间的关系提供了理论借鉴.  相似文献   
10.
湿地碳汇功能探讨:以泥炭地和芦苇湿地为例   总被引:5,自引:0,他引:5  
大量研究表明湿地是地球表层系统中的重要碳汇,对于吸收大气中的温室气体,减缓全球气候变暖有重要作用.由于近几十年来全球气候变暖和人类活动的影响,湿地碳汇功能不断减弱.文章以泥炭地和芦苇Phragmites australis湿地为例来分析湿地的碳汇功能发现:农业排水、土地利用方式的改变、大气中CO2体积分数升高、全球气候变化等人为和自然因素影响了泥炭地的碳汇功能,泥炭地的碳蓄积能力下降,逐渐由"碳汇"转变为"碳源";尽管芦苇湿地是CH4的重要来源,但其对CO2具有较强的碳汇作用,综合来看芦苇湿地的仍是温室气体的净汇;人工芦苇湿地污水净化系统的温室气体排放量高于天然芦苇湿地.分析表明,研究泥炭地和芦苇湿地在全球气候变化下的响应及反馈机制,确定合理的湿地开发模式将是未来湿地碳汇研究的主要方向.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号