首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   3篇
综合类   7篇
基础理论   15篇
社会与环境   2篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Abstract: Extinctions can leave species without mutualist partners and thus potentially reduce their fitness. In cases where non‐native species function as mutualists, mutualism disruption associated with species’ extinction may be mitigated. To assess the effectiveness of mutualist species with different origins, we conducted a meta‐analysis in which we compared the effectiveness of pollination and seed‐dispersal functions of native and non‐native vertebrates. We used data from 40 studies in which a total of 34 non‐native vertebrate mutualists in 20 geographic locations were examined. For each plant species, opportunistic non‐native vertebrate pollinators were generally less effective mutualists than native pollinators. When native mutualists had been extirpated, however, plant seed set and seedling performance appeared elevated in the presence of non‐native mutualists, although non‐native mutualists had a negative overall effect on seed germination. These results suggest native mutualists may not be easily replaced. In some systems researchers propose taxon substitution or the deliberate introduction of non‐native vertebrate mutualists to reestablish mutualist functions such as pollination and seed dispersal and to rescue native species from extinction. Our results also suggest that in places where all native mutualists are extinct, careful taxon substitution may benefit native plants at some life stages.  相似文献   
2.
通过田间试验研究了稻鸭、稻鱼共作复合生态系统稻季田面水及渗漏水中各形态N素的动态变化及N肥的渗漏损失量.结果表明,水稻生长期间,田面水中N素形态以NH 4-N为主,渗漏水中则以NO-3-N为主要形态;施肥有利于田面水和渗漏水各形态N素含量的提高.相对于常规稻作处理(CK),稻鸭(RD)、稻鱼共作(RF)时田面水的pH、NH 4-N含量和TN含量显著增加,渗漏水的NO-3-N和TN含量降低,而渗漏水NH4 4-N元明显变化.所有处理田面水中NH 4-N/TN在施肥后第3天达到最大,随后降低;而所有处理NH 4-N/TN的均值相当.对各处理的N素淋失分析可知,处理RD与RF的肥料N潜在淋失率分别为2.72%、2.58%,低于CK处理(2.99%),表明稻鸭、稻鱼共作可以减少施入N肥潜在的下渗淋失,同时稻鱼共作减少N肥淋失的效果好于稻鸭共作.  相似文献   
3.
All plants studied in natural ecosystemsare symbiotic with fungi that either resideentirely (endophytes) or partially(mycorrhizae) within plants. Thesesymbioses appear to adapt to biotic andabiotic stresses and may be responsible forthe survival of both plant hosts and fungalsymbionts in high stress habitats. Here wedescribe the role of symbiotic fungi inplant stress tolerance and present astrategy based on adaptive symbiosis topotentially mitigate the impacts of globalchange on plant communities.  相似文献   
4.
湿地稻-鸭复合生态系统综合效益研究   总被引:11,自引:0,他引:11  
2000年3月至2001年10月在湖南长沙进行了湿地稻-鸭复合生态系统综合效益的小区试验。结果表明,实行稻-鸭生态种养显著降低稻田甲烷排放量,与常规稻田相比,甲烷排放总量在早稻田与晚稻田分别降低44.2%和40.7%。各处理晚稻田甲烷排放总量高于早稻田甲烷排放总量。养鸭稻田与常规稻田相比,土壤肥力都有所增加,土壤容重降低,>0.25mm团聚体增加2.65~3.12百分点,土壤结构系数增加2.56~6.63百分点。同时,稻田土壤氧化还原状况也得到明显改善。湿地稻-鸭复合生态系统直接的经济效益也远高于常规稻田。  相似文献   
5.
The population dynamics of species interactions provides valuable information for life sciences. Lotka-Volterra equations (LVEs) are known to be the most popular model, and they are mainly applied to the systems of predation and competition. However, LVEs often fail to catch the population dynamics of mutualism; the population sizes of species increase infinitely under certain condition (divergence problem). Furthermore, LVEs never predicts the Allee effect in the systems of obligate mutualism. Instead of LVEs, several models have been presented for mutualism; unfortunately, they are rather complicated. It is, therefore, necessary to introduce a simpler theory for mutualism. In the present paper, we apply the lattice gas model which corresponds to the mean-field theory of the usual lattice model. The derived equations are cubic and contain only essential features for mutualism. In the case of obligate mutualism, the dynamics exhibits the Allee effect, and it is almost the same as in the male-female systems. In our model, the population sizes never increase infinitely, because our model contains not only intra- but also interspecific competitions. If the density of one species increases disproportionately in respect of its mutual partners, then this might imply downward pressure on the population abundance of the mutual partner species and such feedback would eventually act as a controlling influence on the population abundance of either species. We discuss several assumptions in our model; in particular, if both species can occupy in each cell simultaneously, then the interspecific competition disappears.  相似文献   
6.
Several recent hypotheses on the adaptive significance of autumn leaf colours have focused on specialist aphids. However, these hypotheses have overlooked several factors: the preferential investment by healthy vigorous trees in growth rather than defence against herbivores, variation among aphid species in their responses to bright autumn leaves and plant defences and the occurrence of tritrophic interactions in tree crowns. I incorporate these factors into a hypothesis that autumn leaf colours signal tree quality to myrmecophilous specialist aphids, with the aphids, in turn, attracting aphid-tending ants during the following spring, and the ants defending the trees from other aphids and herbivores. Therefore, bright autumn leaves may have adaptive significance, attracting myrmecophilous specialist aphids and their attending ants and, thus, reducing herbivory and competition among aphids.  相似文献   
7.
Fungus-growing ants and their fungal cultivar form a highly evolved mutualism that is negatively affected by the specialized parasitic fungus Escovopsis. Filamentous Pseudonocardia bacteria occurring on the cuticle of attine ants have been proposed to form a mutualistic interaction with these ants in which they are vertically transmitted (i.e. from parent to offspring colonies). Given a strictly vertical transmission of Pseudonocardia, the evolutionary theory predicts a reduced genetic variability of symbionts among ant lineages. The aim of this study was to verify whether actinomycetes, which occur on Acromyrmex octospinosus leaf-cutting ants, meet this expectation by comparing their genotypic variability with restriction fragment length polymorphisms. Multiple actinomycete strains could be isolated from both individual ant workers and colonies (one to seven strains per colony). The colony specificity of actinomycete communities was high: Only 15% of all strains were isolated from more than one colony, and just 5% were present in both populations investigated. Partial sequencing of 16S ribosomal deoxyribonucleic acid of two of the isolated strains assigned both of them to the genus Streptomyces. Actinomycetes could also be isolated from workers of the two non-attine ant species Myrmica rugulosa and Lasius flavus. Sixty-two percent of the strains derived from attine ants and 80% of the strains isolated from non-attine ants inhibited the growth of Escovopsis. Our data suggest that the association between attine ants and their actinomycete symbionts is less specific then previously thought. Soil-dwelling actinomycetes may have been dynamically recruited from the environment (horizontal transmission), probably reflecting an adaptation to a diverse community of microbial pathogens.  相似文献   
8.
植物内生菌(endophyte)是指存活于健康植物组织内部,而又不引发宿主植物表现出明显感染症状的微生物类群,主要包括真菌、细菌和放线菌。其在植物体中的分布具有普遍性、多样性的特点。在目前研究过的所有植物中均发现有内生菌,它们可存在于植物的根、茎、叶、花、果实等各个部位。研究发现内生菌除了随植物遗传进行传播外,还可通过多种途径对宿主植物进行侵染,比如可以以内生菌体或孢子形式通过变形、吸器、或渗透等途径侵染植物,也可以通过分解植物表皮细胞壁或通过各种自然开口(包括侧根发生处,气孔,水孔等)或伤口(包括土壤对根的磨损,病虫对植物的损害及收割多年生植物造成的伤口等)等传播途经进入植物。内生菌由于与宿主植物长期共处,进而形成了一种复杂、特殊的关系。它们有的是互利共生关系,而有的是无害或微害寄生关系。两种关系可随多种因素变化而相互转化。本文主要从内生菌在宿主植物中的分布特点、侵染特性及与宿主植物共处方式等方面,对近十年来植物内生菌与宿主关系的研究进展进行综述和展望,以期为植物内生菌资源开发研究提供参考。  相似文献   
9.
The significance of metal hyperaccumulation for biotic interactions   总被引:13,自引:0,他引:13  
Metal hyperaccumulating plants contain very high metal contents. Because of the general toxicity of metals, chemically-mediated biotic interactions involving hyperaccumulating plants may differ greatly from those of non-hyperaccumulators. Recent research has demonstrated a defensive function for hyperaccumulated metals against herbivores and pathogens. We predict that some herbivore/pathogen species have evolved metal tolerance, and suggest that resulting high metal levels in herbivores/pathogens may defend them against their own predators. Little is known regarding interference and commensal interactions involving hyperaccumulating plants. Decreased competition may occur through an interference interaction similar to allelopathy, in which enrichment of metal in the soil under a hyperaccumulator plant's canopy may inhibit another plant species, thus resulting in “elemental allelopathy”. Metal enrichment of soil under hyperaccumulators also may result in commensalism if another plant species (possibly another hyperaccumulator) derives a benefit from growing in the metal-enriched soil under the canopy of a hyperaccumulating overstory plant. It seems likely that high-metal plant litter will host a specialized microflora of decomposers and may affect nutrient cycling rates. Mutualist biotic interactions also may be affected by the elevated metal contents of hyperaccumulating species. Mycorrhizal fungi may form mutualisms with hyperaccumulators, but the phenomenon is poorly-explored. The few cases investigated to date have not detected mycorrhizae. Pollination and seed dispersal mechanisms may require biotic vectors that might be affected by plant metal content. Hyperaccumulating plants may have solved this dilemma in three ways. First, some may rely on abiotic vectors for pollen or seed dispersal. Second, biotic vectors used by these species may have varied diets and thus dilute metal intake to non-toxic levels. Finally, biotic vectors may have evolved tolerance of elevated dietary levels of metals, and perhaps have become specialists on hyperaccumulator species. Received 7 November 1997; accepted 28 December 1997.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号