首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
污染及防治   5篇
评价与监测   1篇
社会与环境   1篇
  2013年   3篇
  2009年   1篇
  2002年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The distribution coefficients (Kd) and desorption rates of 137Cs and 241Am radionuclides in bottom sediments at different locations in the Black Sea were studied under laboratory conditions. The Kd values were found to be 500 for 137Cs and 3800 for 241Am at the steady state and described exponential curves. Rapid uptake of the radionuclides occurred during the initial period and little accumulation happened after four days. The desorption rates for 137Cs in different bottom sediments were best described by a three-component exponential model. The desorption half-times of 137Cs ranged from 26 to 50 d at the slow components. However, the desorption rate of 241Am described one component for all sediment samples and desorption half-time was found to be 75 d. In general, the results showed that the 241Am radionuclide is more effectively transferred to bottom sediment and has longer turnover time than 137Cs under Black Sea conditions.  相似文献   
2.
Material Disposal Area G is the primary low-levelradioactive waste disposal site at Los Alamos NationalLaboratory, New Mexico, and is adjacent to Pueblo of SanIldefonso lands. Pueblo residents and Los Alamos scientists areconcerned about radiological doses resulting from uptake of AreaG radionuclides by mule deer (Odocoileus hemionus) andRocky Mountain elk (Cervus elaphus), then consumption ofdeer and elk meat by humans. Tissue samples were collected fromdeer and elk accidentally killed near Area G and were analyzedfor 3H, 90Sr, total U, 238Pu, 239, 240Pu,241Am, and 137Cs. These data were used to estimatehuman doses based on meat consumption of 23 kg y-1. Humandoses were also modeled using RESRAD, and dose rates to deer andelk were estimated with a screening model. Dose estimates tohumans from tissue consumption were 2.9 × 10-3 mSv y-1and 1.6 × 10-3 mSv y-1 from deer and elk, respectively,and RESRAD dose estimates were of the same order of magnitude. Estimated dose rates to deer and elk were 2.1 × 10-4 mGyd-1 and 4.7 × 10-4 mGy d-1, respectively. Allestimated doses were significantly less than established exposurelimits or guidelines.  相似文献   
3.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   
4.
Abstract

The purpose of this study was to determine radionuclide and trace element concentrations in bottom‐feeding fish (catfish, carp, and suckers) collected from the confluences of some of the major canyons that cross Los Alamos National Laboratory (LANL) lands with the Rio Grande (RG) and the potential radiological doses from the ingestion of these fish. Samples of muscle and bone (and viscera in some cases) were analyzed for 3H, 90Sr, 137Cs, totU, 238Pu, 239,240Pu, and 241Am and Ag, As, Ba, Be, Cr, Cd, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Most radionuclides, with the exception of 90Sr, in the muscle plus bone portions of fish collected from LANL canyons/RG were not significantly (p<0.05) higher from fish collected upstream (San Ildefonso/background) of LANL. Strontium‐90 in fish muscle plus bone tissue significantly (p<0.05) increases in concentration starting from Los Alamos Canyon, the most upstream confluence (fish contained 3.4E‐02 pCi g‐1 [126E‐02 Bq kg‐1]), to Frijoles Canyon, the most downstream confluence (fish contained 14E‐02 pCi g‐1 [518E‐02 Bq kg‐1]). The differences in 90Sr concentrations in fish collected downstream and upstream (background) of LANL, however, were very small. Based on the average concentrations (±2SD) of radionuclides in fish tissue from the four LANL confluences, the committed effective dose equivalent from the ingestion of 46 lb (21 kg) (maximum ingestion rate per person per year) of fish muscle plus bone, after the subtraction of background, was 0.1 ± 0.1 mrem y‐1 (1.0 ± 1.0 μSv y‐1), and was far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem y‐1 (1000 μSv y‐1). Of the trace elements that were found above the limits of detection (Ba, Cu, and Hg) in fish muscle collected from the confluences of canyons that cross LANL and the RG, none were in significantly higher (p<0.05) concentrations than in muscle of fish collected from background locations.  相似文献   
5.
Abstract

This paper summarizes radionuclide concentrations (3H, 90Sr, 137Cs, 238Pu, 239,240Pu, 241Am, and totU) in muscle and bone tissue of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus) collected from Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, lands from 1991 through 1998. Also, the committed effective dose equivalent (CEDE) and the risk of excess cancer fatalities (RECF) to people who ingest muscle and bone from deer and elk collected from LANL lands were estimated. Most radionuclide concentrations in muscle and bone from individual deer (n = 11) and elk (n = 22) collected from LANL lands were either at less than detectable quantities (where the analytical result was smaller than two counting uncertainties) and/or within upper (95%) level background (BG) concentrations. As a group, most radionuclides in muscle and bone of deer and elk from LANL lands were not significantly higher (p<0.10) than in similar tissues from deer (n = 3) and elk (n = 7) collected from BG locations. Also, elk that had been radio collared and tracked for two years and spent an average time of 50% on LANL lands were not significantly different in most radionuclides from road kill elk that have been collected as part of the environmental surveillance program. Overall, the upper (95%) level net CEDEs (the CEDE plus two sigma for each radioisotope minus background) at the most conservative ingestion rate (50 lbs of muscle and 13 lbs of bone) were as follows: deer muscle = 0.22 mrem y‐1 (2.2 μSv y‐1), deer bone = 3.8 mrem y‐1 (38 μSv y‐1), elk muscle = 0.12 mrem y‐1 (1.2 μSv y‐1), and elk bone = 1.7 mrem y‐1 (17 μSv y‐1). All CEDEs were far below the International Commission on Radiological Protection guideline of 100 mrem y‐1 (1000 μSv y‐1), and the highest muscle plus bone net CEDE corresponded to a RECF of 2E‐06, which is far below the Environmental Protection Agency upper level guideline of 1E‐04.  相似文献   
6.
《Chemosphere》2002,49(10)
The distribution coefficients (Kd) and desorption rates of 137Cs and 241Am radionuclides in bottom sediments at different locations in the Black Sea were studied under laboratory conditions. The Kd values were found to be 500 for 137Cs and 3800 for 241Am at the steady state and described exponential curves. Rapid uptake of the radionuclides occurred during the initial period and little accumulation happened after four days. The desorption rates for 137Cs in different bottom sediments were best described by a three-component exponential model. The desorption half-times of 137Cs ranged from 26 to 50 d at the slow components. However, the desorption rate of 241Am described one component for all sediment samples and desorption half-time was found to be 75 d. In general, the results showed that the 241Am radionuclide is more effectively transferred to bottom sediment and has longer turnover time than 137Cs under Black Sea conditions.  相似文献   
7.
Measurements of airborne radioactive aerosol concentration were carried out on the basis of 1-3 days samples after the Chernobyl disaster and during the period of 1992-2003. Transport of "hot" particles of different composition resulted in the high activity concentrations of (137)Cs, (238)Pu, (239,240)Pu and (241)Am in the atmosphere in Vilnius at the end of April 1986. The (240)Pu/(239)Pu atom ratio showed clear evidence of non-global plutonium originating from the Chernobyl accident in the atmosphere over Lithuania. The (240)Pu/(239)Pu atom ratio ranged from 0.14 to 0.40 in monthly samples in Vilnius in 1995-2003. An increase in activity concentration of (137)Cs by a factor of 100 (up to 300 microBq/m(3)) was found following forest fires in the Ukraine and Belarus. However, no transport of the Chernobyl plutonium was observed and the (240)Pu/(239)Pu atom ratio in samples collected during the forest fires was found to be 0.229 and 0.185, respectively. The exponential decrease in the (240)Pu/(239)Pu atom ratio from 0.30 to 0.19 (mean values) was observed in 1995-2003.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号