首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2014年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Abstract: Species that have temperature‐dependent sex determination (TSD) often produce highly skewed offspring sex ratios contrary to long‐standing theoretical predictions. This ecological enigma has provoked concern that climate change may induce the production of single‐sex generations and hence lead to population extirpation. All species of sea turtles exhibit TSD, many are already endangered, and most already produce sex ratios skewed to the sex produced at warmer temperatures (females). We tracked male loggerhead turtles (Caretta caretta) from Zakynthos, Greece, throughout the entire interval between successive breeding seasons and identified individuals on their breeding grounds, using photoidentification, to determine breeding periodicity and operational sex ratios. Males returned to breed at least twice as frequently as females. We estimated that the hatchling sex ratio of 70:30 female to male for this rookery will translate into an overall operational sex ratio (OSR) (i.e., ratio of total number of males vs females breeding each year) of close to 50:50 female to male. We followed three male turtles for between 10 and 12 months during which time they all traveled back to the breeding grounds. Flipper tagging revealed the proportion of females returning to nest after intervals of 1, 2, 3, and 4 years were 0.21, 0.38, 0.29, and 0.12, respectively (mean interval 2.3 years). A further nine male turtles were tracked for short periods to determine their departure date from the breeding grounds. These departure dates were combined with a photoidentification data set of 165 individuals identified on in‐water transect surveys at the start of the breeding season to develop a statistical model of the population dynamics. This model produced a maximum likelihood estimate that males visit the breeding site 2.6 times more often than females (95%CI 2.1, 3.1), which was consistent with the data from satellite tracking and flipper tagging. Increased frequency of male breeding will help ameliorate female‐biased hatchling sex ratios. Combined with the ability of males to fertilize the eggs of many females and for females to store sperm to fertilize many clutches, our results imply that effects of climate change on the viability of sea turtle populations are likely to be less acute than previously suspected.  相似文献   
2.
Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km2) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species’ use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long‐distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA. Uso de los Patrones de Migración a Larga Distancia de una Especie en Peligro de Extinción para Informar a la Planeación de la Conservación del Área Marina Protegida más Grande  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号