首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
环保管理   1篇
综合类   1篇
基础理论   12篇
污染及防治   1篇
  2021年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  1998年   4篇
  1994年   1篇
  1993年   1篇
排序方式: 共有15条查询结果,搜索用时 11 毫秒
1.
Sperm competition is a widespread phenomenon influencing a range of characters, including investment in gonadal tissue. Conspecific proximity is one factor which can influence the risk of sperm competition and hence testicular investment, and decreased confidence of paternity may be one cost of group living. Aspects of female biology may also influence spermatogenic investment and sperm morphology. This study examines the associations between relative testes mass and roost-group size across 17 species of Megachiroptera. Associations between breeding season duration and investment in spermatogenesis are also examined, as are associations between female reproductive tract dimensions and testes mass and dimensions of spermatozoa across all bats. Relative testes mass was significantly positively associated with roost-group size at a species level and after appropriate phylogenetic control (pairwise comparisons and comparison of independent contrasts). There were no significant relationships between breeding season duration and relative testes mass. Across all bats, neither testes mass nor sperm length were significantly related to dimensions of the female tract. The results are discussed in the context of sperm competition. Received: 7 January 1998 / Accepted after revision: 8 August 1998  相似文献   
2.
From 1992–1996, 3204 artificial roosts of 9 types were placed in woodlots near Indianapolis International Airport in an effort to provide habitat for the federally-endangered Indiana myotis (Myotis sodalis) and to determine the feasibility of using these structures to manage bats in a rapidly developing suburban area. We surveyed these structures at least annually during 1992–1999 and found only northern myotis (Myotis septentrionalis) regularly using the structures. Four other species were occasionally found using structures including big brown bats (Eptesicus fuscus, n = 14 individuals), little brown myotis (Myotis lucifugus, n = 2), Indiana myotis (Myotis sodalis, n = 2), and one silver-haired bat (Lasionycteris noctivagans). Single, triple, and Missouri-style batboxes were almost always used, rather than the six other types of experimental roosts that had been in place. However, after 10 years in place, it appears that Indiana bats are acclimated to boxes, as 6 of them were being used rather regularly by Indiana myotis. Bat boxes can provide roosting habitat for some species under conditions where few suitable roosts exist, but assuring an abundance of natural habitats is usually more desirable for conservation of tree-roosting bats.  相似文献   
3.
Bats have been extensively studied with regard to their ability to orient, navigate and hunt prey by means of echolocation, but almost nothing is known about how they orient and navigate in situations such as migration and homing outside the range of their echolocation system. As volant animals, bats face many of the same problems and challenges as birds. Migrating bats must relocate summer and winter home ranges over distances as far as 2,000 km. Foraging bats must be able to relocate their home roost if they range beyond a familiar area, and indeed circumstantial evidence suggests that these animals can home from more than 600 km. However, an extensive research program on homing and navigation in bats halted in the early 1970s. The field of bird navigation has advanced greatly since that time and many of the mechanisms that birds are known to use for navigation were not known or widely accepted at this time. In this paper I discuss what is known about orientation and navigation in bats and use bird navigation as a model for future research in bat navigation. Technology is advancing such that previous difficulties in studying orientation in bats in the field can be overcome and so that the mechanisms of navigation in this highly mobile animal can finally be elucidated.  相似文献   
4.
We test the hypothesis that echolocation behavior can be used to find the border between bat habitats. Assuming that bats react to background targets in “edge space” but not in “open space”, we determined the border between these two habitat types for commuting individuals of the parti-colored bat Vespertilio murinus. We recorded sequences of bats’ echolocation signals while they flew parallel to the walls of large buildings and to the ground and determined the signals’ average bandwidth, duration, and pulse interval. These parameters varied systematically with the estimated horizontal and vertical distances between the bats and the background. A distinct effect of horizontal distance to the background on echolocation behavior was found for horizontal distances of less than 6 m, thus indicating the border between edge and open space. Only a few bats flew at vertical distances below 5 m. However, enough passages at vertical distances of 5 m and above indicated that the vertical border is somewhere below a distance of 5 m. Within edge space, V. murinus reacted to the background by reducing signal duration, increasing bandwidth at closer distances, and often emitting one signal per wing beat. In open space, signal parameters did not vary as a function of distance to the background. There, V. murinus emitted the longest signals with the narrowest bandwidth and often made one or two wing beats without emitting a pulse. With our data we support with statistical methods the hypothesis that echolocation behavior reveals the border between the habitat types “edge” and “open space”.  相似文献   
5.
We investigated how morphological traits of territorial males in the polygynous bat Saccopteryx bilineata were related to their reproductive success. Because of the frequency of aerial courtship displays and defence manoeuvres, and the high energetic costs of flight, we expected small and symmetric males to be better able to court females on the wing and to monopolize copulations with females in their harems. We predicted that small and symmetric males would sire more offspring within the colony and a larger portion of the young born within their harem than large or asymmetric males. We measured size and fluctuating asymmetry of 21 territorial males and analysed their reproductive success in 6 offspring cohorts (n=209 juveniles) using 11 microsatellite loci. As predicted, small and symmetric males had, on average, a higher reproductive success in the colony than large and asymmetric males. The percentage of young sired by males within their harem increased as males decreased in size, but was not influenced by fluctuating asymmetry. As fluctuating asymmetry of males correlated with their reproductive success within the colony but not within their harems, we infer that fluctuating asymmetry is probably related to female choice, whereas male size is probably important for harem defence on the wing.Communicated by G. Wilkinson  相似文献   
6.
When hunting for fish Noctilio leporinus uses several strategies. In high search flight it flies within 20–50 cm of the water surface and emits groups of two to four echolocation signals, always containing at least one pure constant frequency (CF) pulse and one mixed CF-FM pulse consisting of a CF component which is followed by a frequency-modulated (FM) component. The pure CF signals are the longest, with an average duration of 13.3 ms and a maximum of 17 ms. The CF component of the CF-FM signals averages 8.9 ms, the FM sweeps 3.9 ms. The CF components have frequencies of 52.8–56.2 kHz and the FM components have an average bandwidth of 25.9 kHz. A bat in high search flight reacts to jumping fish with pointed dips at the spot where a fish has broken the surface. As it descends to the water surface the bat shows the typical approach pattern of all bats with decreasing pulse duration and pulse interval. A jumping fish reveals itself by a typical pattern of temporary echo glints, reflected back to the bat from its body and from the water disturbance. In low search flight N. leporinus drops to a height of only 4–10 cm, with body parallel to the water, legs extended straight back and turned slightly downward, and feet cocked somewhat above the line of the legs and poised within 2–4 cm of the water surface. In this situation N. leporinus emits long series of short CF-FM pulses with an average duration of 5.6 ms (CF 3.1 and FM 2.6) and an average pulse interval of 20 ms, indicating that it is looking for targets within a short range. N. leporinus also makes pointed dips during low search flight by rapidly snapping the feet into the water at the spot where it has localized a jumping fish or disturbance. In the random rake mode, N. leporinus drops to the water surface, lowers its feet and drags its claws through the water in relatively straight lines for up to 10m. The echolocation behavior is similar to that of high search flight. This indicates that in this hunting mode N. leporinus is not pursuing specific targets, and that raking is a random or statistical search for surface fishes. When raking, the bat uses two strategies. In directed random rake it rakes through patches of water where fish jumping activity is high. Our interpretation is that the bat detects this activity by echolocation but prefers not to concentrate on a single jumping fish. In the absence of jumping fish, after flying for several minutes without any dips, N. leporinus starts to make very long rakes in areas where it has hunted successfully before (memory-directed random rake). Hunting bats caught a fish approximately once in every 50–200 passes through the hunting area.  相似文献   
7.
This study addresses the functional question of how variation in foraging strategy, predation risk, and social context influence the timing of the evening emergence from day roosts of the grey-headed flying fox, Pteropus poliocephalus. The onset of evening emergence was expected to vary according to the relative costs and benefits of emerging early and should, therefore, reflect an optimal trade-off between predation risks and foraging needs. The onset of the colony-wide emergence was closely correlated with the time of sunset and cloud cover. However, as expected, the onset of the colony-wide emergence was delayed when a diurnal avian predator was present, whereas the onset was advanced during lactation when presumably energetic demands are higher. The trade-off between predation risks and foraging needs was further reflected in the emergence times of individual bats: adult females emerged earlier when they had higher foraging needs as indicated by their body condition; young emerged later when they were smaller and likely to be more at risk from predation due to their less developed flying skills. However, the emergence time of adult males depended on their social status: smaller bachelor males emerged from the colony earlier than larger harem-holding males who guard their harems until the last female had left. Thus, whereas the colony-wide emergence time reflected the outcome of a trade-off between predation risks and general foraging needs, on an individual level, the outcome of this trade-off depended on sex, age, body condition, and structural size and was modified by social context.  相似文献   
8.
Collaborative monitoring over broad scales and levels of ecological organization can inform conservation efforts necessary to address the contemporary biodiversity crisis. An important challenge to collaborative monitoring is motivating local engagement with enough buy-in from stakeholders while providing adequate top-down direction for scientific rigor, quality control, and coordination. Collaborative monitoring must reconcile this inherent tension between top-down control and bottom-up engagement. Highly mobile and cryptic taxa, such as bats, present a particularly acute challenge. Given their scale of movement, complex life histories, and rapidly expanding threats, understanding population trends of bats requires coordinated broad-scale collaborative monitoring. The North American Bat Monitoring Program (NABat) reconciles top-down, bottom-up tension with a hierarchical master sample survey design, integrated data analysis, dynamic data curation, regional monitoring hubs, and knowledge delivery through web-based infrastructure. NABat supports collaborative monitoring across spatial and organizational scales and the full annual lifecycle of bats.  相似文献   
9.
Noctuid moths listen for the echolocation calls of hunting bats and respond to these predator cues with evasive flight. The African bollworm moth, Helicoverpa armigera, feeds at flowers near intensely singing cicadas, Platypleura capensis, yet does not avoid them. We determined that the moth can hear the cicada by observing that both of its auditory receptors (A1 and A2 cells) respond to the cicada's song. The firing response of the A1 cell rapidly adapts to the song and develops spike periods in less than a second that are in excess of those reported to elicit avoidance flight to bats in earlier studies. The possibility also exists that for at least part of the day, sensory input in the form of olfaction or vision overrides the moth's auditory responses. While auditory tolerance appears to allow H. armigera to exploit a food resource in close proximity to acoustic interference, it may render their hearing defence ineffective and make them vulnerable to predation by bats during the evening when cicadas continue to sing. Our study describes the first field observation of an eared insect ignoring audible but innocuous sounds.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号