首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   1篇
基础理论   4篇
污染及防治   1篇
  2022年   1篇
  2016年   1篇
  2011年   2篇
  2010年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Understanding risks from the human-mediated spread of non-indigenous species (NIS) is a critical component of marine biosecurity management programmes. Recreational boating is well-recognised as a NIS pathway, especially at a regional scale. Assessment of risks from this pathway is therefore desirable for coastal environments where recreational boating occurs. However, formal or quantitative risk assessment for the recreational vessel pathway is often hampered by lack of data, hence often relies on expert opinion. The use of expert opinion itself is sometimes limited by its inherent vagueness, which can be an important source of uncertainty that reduces the validity and applicability of the assessment. Fuzzy logic, specifically interval type-2 fuzzy logic, is able to model and propagate this type of uncertainty, and is a useful technique in risk assessment where expert opinion is relied upon. The present paper describes the implementation of a NIS fuzzy expert system (FES) for assessing the risk of invasion in marine environments via recreational vessels. The FES was based on expert opinion gathered through systematic elicitation exercises, designed to acknowledge important uncertainty sources (e.g., underspecificity and ambiguity). The FES, using interval type-2 fuzzy logic, calculated an invasion risk value (integrating NIS infection and detection probabilities) for a range of invasion scenarios. These scenarios were defined by all possible combinations of two vessel types (moored and trailered), five vessel components (hull, deck, internal spaces, anchor, fishing gear), two infection modes (fouling, water/sediment retention) and six frequently visited marine habitats (marina, mooring, farm, ramp, wharf, anchorage). Although invasion risk values determined using the FES approach was scenario-specific, general patterns were identified. Moored vessels consistently showed higher invasion risk values than trailered vessels. Invasion risk values were higher for anchorages, moorings and wharves. Similarly, hull-fouling was revealed as the highest infection risk mode after pooling results across all habitats. The NIS fuzzy expert system presented here appears as a valuable prioritising and decision-making tool for NIS research, prevention and control activities. Its easy implementation and wide applicability should encourage the development and application of this type of system as an integral part of biosecurity, and other environmental management plans.  相似文献   
2.
The spread of invasive species is a major ecological and economic problem. Dynamic spread modelling is a potentially valuable tool to assist regional and central government authorities to monitor and control invasive species. To date a lack of suitable data has meant that most broad scale dispersal models have not been validated with independent datasets, and so their predictive ability and reliability has remained unscrutinised. A dynamic, stochastic dispersal model of the widely invasive plant Buddleja davidii was calibrated on European spread data and then used to project the temporal progression of B. davidii's distribution in New Zealand, starting from several different historical distributions. To assess the model's performance, we constructed an occupancy map based on the average number of simulation realisations that have a population present. The application of Receiver Operating Characteristic (ROC) curves to occupancy maps is introduced, but with specificity substituted by the proportion of available area used in a realisation. A derivative measure, the partial area under these curves when assessed through time (pAUC), is introduced and used to assess overall performance of the spread model. The model was able to attain a high level of model sensitivity, encompassing all of the known locations within the occupancy envelope. However, attempting to simulate the spread of this invasive species beyond a decade had very low model specificity. This is due to several factors, including the exponential process of spread (the further a population spreads the more sites exist from which it can spread stochastically), and the Markovian chain property of the stochastic system whereby differences between realisations compound through time. These features are seen in many reports of spread models, without being explicitly acknowledged. Our measure of pAUC through time allows a model's temporal performance and its specificity to be simultaneously assessed. While the rapid deterioration in model performance limits the utility of this type of modelling for forecasting long-term broad-scale strategic management of biological invasions, it does not necessarily limit its attractiveness for informing smaller scale and shorter term invasion management activities such as surveillance, containment and local eradication.  相似文献   
3.
Will Smith 《Ambio》2022,51(3):485
Zoonotic disease emergence has become a core concern of biodiversity conservation amid the ongoing impacts of the COVID-19 pandemic. Major international conservation groups now comprehensively center larger human–nature imbalances not only as problems of global public health but as a core challenge of the conservation movement, alongside habitat destruction, biodiversity loss and climate change. There is, however, little consideration of how new biosecurity concerns might alter conservation practice with unexpected and potential harmful impacts on human communities, particularly in developing nations with significant human–wildlife interfaces. Reviewing emerging policy positions from key conservation organizations, this article argues that the proposed responses to the COVID-19 pandemic hold the potential to (a) amplify existing people-park conflicts, and (b) generate new tensions by integrating global systems of viral surveillance into biodiversity conservation. I conclude that the close integration of biosecurity concerns into conservation policies requires greater acknowledgment of the unique challenges for human communities.Supplementary InformationThe online version of this article (10.1007/s13280-021-01576-0) contains supplementary material, which is available to authorized users.  相似文献   
4.
5.
Assumptions about public stakeholder attitudes to pest and disease management can influence the decisions of forest managers and NGOs involved in responding to pests and diseases; however, they are rarely assessed directly. Evidence on the social acceptability of tree health management methods is required to inform government led policy and management. A nationally representative survey of 2000 members of the UK public was used to address two research questions: (1) How acceptable are tree health management methods to the public? (2) How do opinions about woodland functions, concern and awareness of tree pests and diseases, and demographics influence acceptance of management methods? We found that public stakeholders are highly supportive of tree health management; however, knowledge about tree pests, diseases, and management options is low. Methods seen as more targeted and ‘natural’ were preferred, e.g. felling and burning only affected trees and using biological control rather than chemical control. There were demographic differences in attitudes: men and older people are more likely to support management interventions and stronger management methods than females and younger people. Acceptance of management can also differ according to location and local context (e.g. management is less supported when it may impact on wildlife) and values (e.g. those with economic values are more supportive of management). These findings provide evidence to support current government initiatives on tree health and should improve confidence amongst managers tasked with carrying out tree pest and disease management. However, there is a need for in-depth qualitative studies to explain the beliefs which influence demographic variations in acceptance and the influence of concepts such as ‘nativeness’ and ‘naturalness’.  相似文献   
6.
Capturing the spread of biological invasions in heterogeneous landscapes is a complex modelling task where information on both dispersal and population dynamics needs to be integrated. Spatial stochastic simulation and phenology models have rarely been combined to assist in the study of human-assisted long-distance dispersal events.Here we develop a process-based spatially explicit landscape-extent simulation model that considers the spread and detection of invasive insects. Natural and human-assisted dispersal mechanisms are modelled with an individual-based approach using negative exponential and negative power law dispersal kernels and gravity models. The model incorporates a phenology sub-model that uses daily temperature grids for the prediction and timing of the population dynamics in each habitat patch. The model was applied to the study of the invasion by the important maize pest western corn rootworm (WCR) Diabrotica virgifera ssp. virgifera in Europe. We parameterized and validated the model using maximum likelihood and simulation methods from the historical invasion of WCR in Austria.WCR was found to follow stratified dispersal where international transport networks in the Danube basin played a key role in the occurrence of long-distance dispersal events. Detection measures were found to be effective and altitude had a significant effect on limiting the spread of WCR. Spatial stochastic simulation combined with phenology models, maximum likelihood methods and predicted versus observed regression showed a high degree of flexibility that captured the salient features of WCR spread in Austria. This modelling approach is useful because it allows to fully exploit and the often limited and heterogeneous information available regarding the population dynamics and dispersal of alien invasive insects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号