首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
环保管理   4篇
综合类   1篇
基础理论   13篇
污染及防治   1篇
评价与监测   1篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Since returning an ecosystem to its pristine state may not be realistic in every situation, the concept of habitat diversity is proposed to help decision-makers in defining realistic restoration objectives. In order to maintain habitat diversity and enhance the long-term success of restoration, process-oriented projects should be preferred to species-oriented ones. Because the hydrogeomorphological processes that influence biodiversity operate at different spatiotemporal scales, three scales are considered: river sectors, floodplain waterbodies, and mesohabitats within each waterbody. Based on a bibliographical review, three major driving forces are proposed for incorporation into the design of restoration projects: (1) flow velocity and flood disturbances, (2) hydrological connectivity, and (3) water supply. On the sector scale, increased habitat diversity between waterbodies can be achieved by combining various intensities of these driving forces. On the waterbody scale, increased habitat diversity within the ecosystem can be achieved by varying water depth, velocity, and substrate. The concept is applied to a Rhône River sector (France) where three terrestrialized side arms will be restored. Two were designed to be flood scoured, one having an additional supply of groundwater, the other being connected to the river at both ends. The third cannot be scoured by floods because of upstream construction and would be supplied by river backflow through a downstream connection. Habitat diversity within the ecosystem is exemplified on one side arm through the design of a sinuous pathway combined with variation of water depth, wetted width, and substrate grain size. Self-colonization of the side arms is expected owing to the restoration of connectivity to upstream sources of potential colonizers.  相似文献   
2.
Over the last decades, agricultural intensification has caused a dramatic reduction of grassy habitats. This habitat loss has had a strong negative effect on many meadow-living insect populations, including butterflies. As a part of the cross-compliance measures of the Common Agricultural Policy of the European Union, subsidies for creation and maintenance of grassy field margins (GFM) have been launched. Among other environmental issues, they may serve as corridors for movement of various meadow-living species between individual meadows. Their role as corridors has, however, not yet been demonstrated at the landscape scale and their characteristics that most significantly increase landscape connectivity are unknown. Empirical data for such studies are missing, as the GFM subsidies were launched only 3 years ago. One possibility to get some predictions of their outcomes is provided by simulation models. Here we present our simulation results, using an extension of the model developed by Kindlmann et al. (2004) for the Meadow Brown butterfly, Maniola jurtina. The extension includes the probability to cross a boundary (Conradt and Roper, 2006) that negatively influences dispersal rates but increases sensitivity to the corridor effect. Our simulations show that GFMs increase the dispersal rates between habitat patches and we predict the optimal combinations of width and number of GFMs in the landscape. This way we provide a decision-making tool for increasing landscape connectivity for M. jurtina and similar species. Although our simulations are based on a particular species, they may be generalized because this species shows dispersal rates that are typical of butterfly metapopulations (Conradt et al., 2000), and a potentially widespread dispersal kernel (i.e. “foray search”) that has been reported in a wide variety of species (see Conradt et al., 2003 for a review).  相似文献   
3.
Structural modifications to landscapes affect the ability of organisms to access different habitat patches. There exist, however, very few general methods by which to relate modifications to expectations of effects, and even fewer that enable understanding of how multiple modifications may interact. In the absence of any guiding principles, ecologists have assumed that interactions will result in complex landscape-scale effects. One way of understanding such effects is through rendering a landscape as a graph or network, among the simplest of which are dendritic networks typified by stream systems. Yet even for stream networks, there are no known general principles concerning the nature of interactions between multiple modifications. We developed a model to describe the ability of fish to access and use different habitat patches within dendritic networks. We used mathematical and numerical analyses of the model to investigate how the habitat value of a network is affected by changes in connectivity and habitat quality, and then to examine interactions between multiple modifications. Rather than showing complex interactions, our analytic and simulation-based results show that the combined effect of multiple modifications approximately equals the sum of individually predicted effects. Dendritic networks thus appear to respond far more simply to multiple modifications than has previously been assumed. These results have implications for stream management planning, and offer a firm foundation from which to better understand population processes within dendritic networks.  相似文献   
4.
Although larval dispersal is crucial for the persistence of most marine populations, dispersal connectivity between sites is rarely considered in designing marine protected area networks. In particular the role of structural characteristics (known as topology) for the network of larval dispersal routes in the conservation of metapopulations has not been addressed. To determine reserve site configurations that provide highest persistence values with respect to their connectivity characteristics, we model nine connectivity topological models derived from graph theory in a demographic metapopulation model. We identify reserve site configurations that provide the highest persistence values for each of the metapopulation connectivity models. Except for the minimally connected and fully connected populations, we observed two general ‘rules of thumb’ for optimising the mean life time for all topological models: firstly place the majority of reserves, so that they are neighbours of each other, on the sites where the number of connections between the populations is highest (hub), secondly when the reserves have occupied the majority of the vertices in the hub, then select another area of high connectivity and repeat. If there are no suitable hubs remaining then distribute the remaining reserves to isolated locations optimising contact with non-reserved sites.  相似文献   
5.
The identity of an individual patch as a source or a sink within a metapopulation is a function of its ability to produce individuals and to disperse them to other patches. In marine systems patch identity is very often defined by dispersal ability alone—upstream patches are sources—while issues of variable habitat quality (which affects local production) are ignored. This can have important ramifications for the science of marine reserve siting. This study develops a spatially explicit source–sink metapopulation model for reef fish and uses it to evaluate the relative importance of connectivity versus demography and how this depends upon the level of local larval retention and the strength of density-dependent recruitment. Elasticity analyses indicated that patch contribution (source or sink) was more sensitive to demographic parameters (particularly survival) than connectivity and this effect was conserved even under strong levels of density-dependence and was generally strengthened as local retention increased. Variability in the relationship between parameter elasticity and local retention was shown to be dependent upon the magnitude of connectivity for an individual patch relative to a critical connectivity value. The proportion of larvae lost due to transport processes was an important parameter which directly affected the magnitude of this critical connectivity value. Patches with connectivity values less than the critical value contributed to the metapopulation largely via production (i.e., local demographics most important). As local retention increased, so did the importance of demographic parameters in these patches. Patches with connectivity values greater than the critical value contributed largely via dispersal of larvae and thus the importance of local demographics decreased as local retention increased.  相似文献   
6.
Stream fish bioassessment methods assume that fish assemblages observed in sample sites reflect responses to local stressors, but fish assemblages are influenced by local factors as well as regional dispersal to and from connected streams. We hypothesized that fish movement to and from refugia and source populations in connected rivers (i.e., riverine dispersal) would weaken or decouple relations between fish community metrics and local environmental conditions. We compared fish-environment relations between streams that flow into large rivers (mainstem tributaries) and streams that lack riverine confluences (headwater tributaries) at multiple spatial grains using data from the USEPA's Environmental Monitoring and Assessment Program in the mid-Atlantic highlands, USA (n = 157 sites). Headwater and mainstem tributaries were not different in local environmental conditions, but showed important differences in fish metric responses to environmental quality gradients. Stream sites flowing into mainstem channels within 10 fluvial km showed consistently weaker relations to local environmental conditions than stream sites that lacked such mainstem connections. Moreover, these patterns diminished at longer distances from riverine confluences, consistent with the hypothesis of riverine dispersal. Our results suggest that (1) the precision of fish bioassessment metrics may be improved by calibrating scoring criteria based on the spatial position of sites within stream networks and (2) the spatial grain of fish bioassessment studies may be manipulated to suit objectives by including or excluding fishes exhibiting riverine dispersal.  相似文献   
7.
The perceptual range of an animal towards different landscape elements affects its movements through heterogeneous landscapes. However, empirical knowledge and modeling tools are lacking to assess the consequences of variation in the perceptual range for movement patterns and connectivity. In this study we tested how changes in the assumed perception of different landscape elements affect the outcomes of a connectivity model. We used an existing individual-based, spatially explicit model for the dispersal of Eurasian lynx (Lynx lynx). We systematically altered the perceptual range in which animals recognize forest fragments, water bodies or cities, as well as the probability that they respond to these landscape elements. Overall, increasing the perceptual range of the animals enhanced connectivity substantially, both qualitatively and quantitatively. An enhanced range of attraction to forests had the strongest impact, doubling immigration success; an enhanced range of attraction to rivers had a slightly lower impact; and an enhanced range of avoidance of cities had the lowest impact. Correcting the enhancement in connectivity by the abundance of each of the landscape elements in question reversed the results, indicating the potential sensitivity of connectivity models to rare landscape elements (in our case barriers such as cities). Qualitatively, the enhanced perception resulted in strong changes in movement patterns and connectivity. Furthermore, model results were highly parameter-specific and patch-specific. These results emphasize the need for further empirical research on the perceptual capabilities of different animals in different landscapes and conditions. They further indicate the usefulness of spatially explicit individual-based simulation models for recognizing consistent patterns that emerge, despite uncertainty regarding animals’ movement behavior. Altogether, this study demonstrates the need to extend the concept of ‘perceptual ranges’ beyond patch detection processes, to encompass the wide range of elements that can direct animal movements during dispersal through heterogeneous landscapes.  相似文献   
8.
The Mediterranean Sea hosts 5.6% of the world benthic invertebrate species on 0.82% of the ocean surface. Mediterranean ecosystems are also characterized by low densities (and biomasses) compared to other oceanic ecosystems, a feature often attributed to their oligotrophic environment. Oligotrophic conditions can induce lower growth rates and higher mortality rates, and a stronger competition for food between individuals. A theoretical model was developed in order to study the diversity vs. density patterns in coastal benthic invertebrate species. This model describes their minimal population dynamics including basic processes (growth, mortality, reproduction and effects of competitive interactions between individuals) and incorporating fluxes of larvae (finally recruited as juveniles) between a mosaic of local habitats. Populations are therefore structured in a metacommunity. The connectivity between local communities is ensured by passive pelagic larval dispersal. In the Mediterranean Sea, because of the microtidal regime, the connectivity between coastal habitats is lower and more variable than in macrotidal basins. Mathematical properties of the model revealed that competitive interactions (intra- and interspecific competitions) have a stabilizing effect on interacting organisms when gains by recruitment are higher than losses by mortality. In addition, low mortality rates and low connectivity which decreases negative local interactions maintains high regional species diversity with low local densities. This property suggested that oligotrophy cannot be the only factor leading to the high diversity–low density pattern observed in the Mediterranean Sea.  相似文献   
9.
10.
The removal, alteration and fragmentation of habitat in many parts of the world has led to a loss of biodiversity. Within the prevailing societal limitations the process is not easily reversed. Attempts are being made to minimise the fragmentation of remaining habitat by strategically reversing or managing habitat loss. Although their relative usefulness is a topic of debate among ecologists, habitat corridors are seen as one way of maintaining spatially dependent ecological processes within landscapes where habitat has been seriously depleted. Corridors can only be effective if they significantly contribute to the species sustaining processes of gene flow, resource access or the colonisation of vacant patches. We present a spatial habitat modelling methodology for evaluating the contribution and potential contribution of connecting paths to landscape connectivity. We have developed the spatial links tool (SLT), which maps link value across a region. The SLT combines connectivity measures from metapopulation ecology with the least cost path algorithm from graph theory, and can be applied to continuously variable landscape data. Combined with expert judgement, link value maps can be used to delineate habitat corridors. The approach capitalises on some synergies between ecological relevance and computational efficiency to produce an easily applied heuristic tool that has been successfully applied in NSW Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号