首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Hierarchical modeling for extreme values observed over space and time   总被引:3,自引:1,他引:2  
We propose a hierarchical modeling approach for explaining a collection of spatially referenced time series of extreme values. We assume that the observations follow generalized extreme value (GEV) distributions whose locations and scales are jointly spatially dependent where the dependence is captured using multivariate Markov random field models specified through coregionalization. In addition, there is temporal dependence in the locations. There are various ways to provide appropriate specifications; we consider four choices. The models can be fitted using a Markov Chain Monte Carlo (MCMC) algorithm to enable inference for parameters and to provide spatio–temporal predictions. We fit the models to a set of gridded interpolated precipitation data collected over a 50-year period for the Cape Floristic Region in South Africa, summarizing results for what appears to be the best choice of model.
Alan E. GelfandEmail:
  相似文献   
2.
Estimation of population size has traditionally been viewed from a finite population sampling perspective. Typically, the objective is to obtain an estimate of the total population count of individuals within some region. Often, some stratification scheme is used to estimate counts on subregions, whereby the total count is obtained by aggregation with weights, say, proportional to the areas of the subregions. We offer an alternative to the finite population sampling approach for estimating population size. The method does not require that the subregions on which counts are available form a complete partition of the region of interest. In fact, we envision counts coming from areal units that are small relative to the entire study region and that the total area sampled is a very small proportion of the total study area. In extrapolating to the entire region, we might benefit from assuming that there is spatial structure to the counts. We implement this by modeling the intensity surface as a realization from a spatially correlated random process. In the case of multiple population or species counts, we use the linear model of coregionalization to specify a multivariate process which provides associated intensity surfaces hence association between counts within and across areal units. We illustrate the method of population size estimation with simulated data and with tree counts from a Southwestern pinyon-juniper woodland data set.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号