首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   2篇
污染及防治   1篇
  2023年   1篇
  2020年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 406 毫秒
1
1.
Hydrothermal carbonization of simulated food waste was performed at 250 °C for 20 h using deionized water (DI) and 0.01 N solutions of HCl, NaCl, and NaOH. The hydrochars produced were washed with acetone and the adsorptive capacity of the washed and unwashed hydrochars for atrazine were characterized. Using a generalized linear model, it was shown that the adsorptive capacity of the washed hydrochar was significantly higher than that of the unwashed hydrochars. The HCl processed unwashed hydrochar has a slightly higher adsorptive capacity compared to the DI processed hydrochar while both the NaOH processed washed and unwashed hydrochars were slightly lower than the corresponding DI processed hydrochars. 13C solid-state NMR results showed no discernible differences in surface functional groups among the washed hydrochars and among the unwashed hydrochars. A clear decrease in alkyl groups and an increase in aromatic/olefinic-C groups were observed after acetone washing. 1H liquid-phase NMR showed carbon alkyl chains were present in the acetone wash. Interaction energies calculated using dispersion corrected density functional theory show that atrazine is more strongly adsorbed to surfaces without weakly associated alkyl groups.  相似文献   
2.
Converting biomass materials to humic acid is a sustainable method for humic acid production and achieve biomass valorization. A two-step hydrothermal treatment method was adopted in this study to produce humic acid from corn stalks. In the first step of the process, hydrochar was prepared at different hydrothermal temperatures and pH values. Their chemical properties were then analyzed, and the hydrochar-derived humic acids were produced under alkaline hydrothermal conditions (denoted as HHAalk). The hydrochar, prepared under high temperature (200 °C) and strong acidic (pH 0) conditions, achieved high HHAalk yields (i.e., 67.9 wt% and 68.8 wt% calculated based on weight of hydrochar). The sources of HHAalk formation were as follows: 1) production in the hydrochar preparation stage, and 2) increment under the alkaline hydrothermal treatment of hydrochar. The degree of hydrochar unsaturation was suggested as an indicator for evaluating the hydrochar humification potential under alkaline hydrothermal conditions. This study provides an important reference for the preparation of suitable hydrochar with high hydrothermal humification potential.  相似文献   
3.
• TPhP showed faster and higher sorption on biochars than TPPO. • Pyrochars had higher sorption capacity for TPPO than hydrochar. • Hydrophobic interactions dominated TPhP sorption by biochars. • The π-π EDA and electrostatic interactions are involved in sorption. Aromatic organophosphate flame retardant (OPFR) pollutants and biochars are commonly present and continually released into soils due to their increasingly wide applications. In this study, for the first time, the sorption of OPFRs on biochars was investigated. Although triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) have similar molecular structures and sizes, TPhP exhibited much faster and higher sorption than TPPO due to its stronger hydrophobicity, suggesting the dominant role of hydrophobic interactions in TPhP sorption. The π-π electron donor–acceptor (EDA) interactions also contributed to the sorption process, as suggested by the negative correlation between the sorption capacity of the aromatic OPFRs and the aromatic index (H/C atomic ratios) of biochar. Density functional theory calculations further showed that one benzene ring of aromatic OPFRs has no electrons, which may interact with biochar via π-π EDA interactions. The electrostatic attraction between the protonated P = O in OPFRs and the negatively charged biochar was found to occur at pH below 7. This work provides insights into the sorption behaviors and mechanisms of aromatic OPFRs by biochars.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号