首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
综合类   1篇
基础理论   7篇
污染及防治   1篇
  2013年   2篇
  2012年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
绿僵菌防治第1代马尾松毛虫的研究   总被引:6,自引:0,他引:6  
供试的绿僵菌和白僵菌菌种在室内对马尾松毛虫2~3龄幼虫的毒力相当.在25℃条件下,绿僵菌的n (LC50)=1.06×107 L-1, t (LT50) = 7.95~12.04 d (n(spore)=1.0×1011~1.0×107 L-1);白僵菌的n( LC50) =1.37×106 L-1 ,t (LT50) = 7.48~11.27 d ( n(spore) = 1.0×1011~1.0×107 L-1).试验显示与白僵菌相比,绿僵菌具有较强的耐高温和耐旱特性.在高温、低湿的条件下绿僵菌的杀虫效果优于白僵菌.林间防治试验也表明,绿僵菌防治第1代马尾松毛虫的效果显著优于白僵菌,显示出较好的应用前景.表8 参14  相似文献   
3.
通过筛选文库获得绿僵菌钙传感蛋白基因MaNcs1基因全长cDNA序列,并对其在致病过程中的作用进行了分析.结果显示,MaNcs1基因cDNA全长792 bp,开放阅读框为573 bp,编码190个氨基酸;采用RNA干扰技术下调该基因的表达后,对东亚飞蝗的生测实验表明,绿僵菌毒力显著下降,说明该基因与绿僵菌的致病性有关,为以后深入研究该基因的致病机制奠定了基础.  相似文献   
4.
Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62–85 kDa) in the hemolymph as well as an induction of novel proteins (28–48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.  相似文献   
5.
Biological control at the larval stages of development of mosquitoes is one of the techniques that afford a non-expensive, easy-to-use, and environment-friendly method for mosquito control. In this study, investigations were undertaken on microbial product to develop a strategy to control mosquito larval and pupal population in the lab and field. Highest larval mortality was evident in the lab with LC50 and LC90 at 0.25 and 0.5 at 24?h for Aedes aegypti. In the field study, to kill mosquito larval population resulting in 100% mortality of A. aegypti required 5 days duration. The dose-dependent mortality was calculated using a lethal time of approximately 1–5 days test period. The number of mosquito bites (%) (vectorial capacity) decreased at increasing concentration of fungal insecticide. Data indicate that the fungal pathogen interacting with mosquito larvae controlled mosquitoes in the lab and field.  相似文献   
6.
绿僵菌降解寄主表皮的蛋白酶同工酶研究   总被引:4,自引:0,他引:4  
研究了不同碳氮源对金龟子绿僵菌( Metarhizium anisopliae) 产生与分解昆虫外壳相关的蛋白酶活性和同工酶谱带的影响. 结果表明:蝉蜕、虻虫壳、蝇蛆壳、蚕蛹壳、虾壳、胶体几丁质均可使金龟子绿僵菌产生蛋白酶,虾壳和胶体几丁质所产生的蛋白酶比活性最高,蝉蜕次之. 但蛋白酶总活性以蝉蜕最高,虻虫壳次之.样品经等电聚焦电泳后,印迹于X光片上,显示蛋白酶同工酶,蝉蜕和蚕蛹壳产生的蛋白酶同工酶谱带最丰富. 以蝉蜕为唯一碳氮源时,金龟子绿僵菌产生蛋白酶的最佳条件为26℃、初始pH6.0 、最终孢子浓度n= 1×107mL-1 .  相似文献   
7.
在不同温度和不同光照条件下对3株金龟子绿僵菌和1株贵州绿僵菌的液体深层培养研究表明,光照对菌丝生长和液生分生孢子产量均无显著影响。但培养温度显著影响菌丝生长和液生分生孢子的产出率,25-28℃为液体深层培养绿僵菌的适宜温度,其中以28℃最佳,对3-4龄马尾松毛虫幼虫的室内毒力测定表明,绿僵菌液生分生孢子的毒力略低于气生分生孢子。  相似文献   
8.
金龟子绿僵菌固体培养条件的筛选   总被引:7,自引:0,他引:7  
测定了不同温度和pH及碳氮源、微量元素对金龟子绿僵菌菌丝生长及产孢的影响.结果表明:pH7、温度25℃最适合绿僵菌生长,固体培养中蔗糖为碳源、酵母为氮源、加入微量元素Mn,金龟子绿僵菌生长最好、产孢量最高.用正交方法探索了金龟子绿僵菌的最适固体培养条件.表6参10  相似文献   
9.
The benefit of sociality in relation to disease susceptibility was studied in the dampwood termite Zootermopsis angusticollis. Although contact with high concentrations of fungal conidia is lethal, the survivorship of nymphs exposed to spore suspensions ranging from 6 × 106 to 2 × 108 spores/ml of the fungus Metarhizium anisopliae increased with group size. The survivorship (measured as LT50) of isolated individuals ranged from 3.0 to 4.8 days, but infected nymphs living in groups of 10 and 25 individuals survived significantly longer (5.6–8.3 and 5.6–9.1 days, respectively). In most cases, there were no significant differences in the survival distributions of the 10- and 25-termite groups. When nymphs were infected with concentrations of 7 × 101–7 × 104 spores/ml and allowed to interact with healthy nestmates, fungal infections were not contracted by the unexposed termites. Moreover, infected termites benefitted from social contact with unexposed nestmates: their survival rates were significantly higher than those of infected termites living with similarly infected nestmates. Allogrooming, which increased in frequency during and after exposure to conidia, appeared to remove potentially infectious spores from the cuticle, thus increasing termite survivorship. These results suggest that allogrooming plays a crucial role in the control of disease and its death hazard in termites. The infection-reducing advantage of group living may have been significant in the evolution of social behavior in the Isoptera. Received: 18 March 1998 / Accepted after revision: 31 May 1998  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号