首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
废物处理   1篇
环保管理   2篇
综合类   1篇
基础理论   2篇
污染及防治   2篇
社会与环境   2篇
  2020年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
• Nanowire-assisted LEEFT is applied for water disinfection with low voltages. • LEEFT inactivates bacteria by disrupting cell membrane through electroporation. • Multiple electrodes and device configurations have been developed for LEEFT. • The LEEFT is low-cost, highly efficient, and produces no DBPs. • The LEEFT can potentially be applicable for water disinfection at all scales. Water disinfection is a critical step in water and wastewater treatment. The most widely used chlorination suffers from the formation of carcinogenic disinfection by-products (DBPs) while alternative methods (e.g., UV, O3, and membrane filtration) are limited by microbial regrowth, no residual disinfectant, and high operation cost. Here, a nanowire-enabled disinfection method, locally enhanced electric field treatment (LEEFT), is introduced with advantages of no chemical addition, no DBP formation, low energy consumption, and efficient microbial inactivation. Attributed to the lightning rod effect, the electric field near the tip area of the nanowires on the electrode is significantly enhanced to inactivate microbes, even though a small external voltage (usually<5 V) is applied. In this review, after emphasizing the significance of water disinfection, the theory of the LEEFT is explained. Subsequently, the recent development of the LEEFT technology on electrode materials and device configurations are summarized. The disinfection performance is analyzed, with respect to the operating parameters, universality against different microorganisms, electrode durability, and energy consumption. The studies on the inactivation mechanisms during the LEEFT are also reviewed. Lastly, the challenges and future research of LEEFT disinfection are discussed.  相似文献   
2.
Nanotechnology is a major innovative scientific and economic growth area, which may present a variety of hazards for environmental and human health. The surface properties and very small size of nanoparticles and nanotubes provide surfaces that may bind and transport toxic chemical pollutants, as well as possibly being toxic in their own right by generating reactive radicals. There is a wealth of evidence for the harmful effects of nanoscale combustion-derived particulates (ultrafines), which when inhaled can cause a number of pulmonary pathologies in mammals and humans. However, release of manufactured nanoparticles into the aquatic environment is largely an unknown. This review addresses the possible hazards associated with nanomaterials and harmful effects that may result from exposure of aquatic animals to nanoparticles. Possible nanoparticle association with naturally occurring colloids and particles is considered together with how this could affect their bioavailability and uptake into cells and organisms. Uptake by endocytotic routes are identified as probable major mechanisms of entry into cells; potentially leading to various types of toxic cell injury. The higher level consequences for damage to animal health, ecological risk and possible food chain risks for humans are also considered based on known behaviours and toxicities for inhaled and ingested nanoparticles in the terrestrial environment. It is concluded that a precautionary approach is required with individual evaluation of new nanomaterials for risk to the health of the environment. Although current toxicity testing protocols should be generally applicable to identify harmful effects associated with nanoparticles, research into new methods is required to address the special properties of nanomaterials.  相似文献   
3.
Naturally occurring nanoparticles (NP) enhance the transport of hydrophobic organic contaminants (HOCs) in porous media. In addition, the debate on the environmental impact of engineered nanoparticles (ENP) has become increasingly important. HOC bind strongly to carbonaceous ENP. Thus, carbonaceous ENP may also act as carriers for contaminant transport and might be important when compared to existing transport processes. ENP bound transport is strongly linked to the sorption behavior, and other carbonaceous ENP-specific properties. In our analysis the HOC-ENP sorption mechanism, as well as ENP size and ENP residence time, was of major importance. Our results show that depending on ENP size, sorption kinetics and residence time in the system, the ENP bound transport can be estimated either as (1) negligible, (2) enhancing contaminant transport, or (3) should be assessed by reactive transport modeling. One major challenge to this field is the current lack of data for HOC-ENP desorption kinetics.  相似文献   
4.
Nanotechnology has the potential for the development of new materials and processes that can substitute for toxic materials now used in industry. Excitement over this possibility is tempered, however, by the potential adverse environmental health and safety aspects of the new nanomaterials. Although a few examples from the literature are encouraging, e.g., wire and cable insulation, great care must be taken to perform complete alternatives assessment evaluations of any new nanotechnology-enabled product before its adoption.  相似文献   
5.
Nanotechnology has attracted a great interest in recent years due to its expected impact on many areas such as energy, medicine, electronics, and space industries. This review provides the state-of-art knowledge on the synthesis of nanoparticles by microorganisms including bacteria, fungi, actinomycetes, and yeast, and their effect on microbiological processes. The available microbes and their predicted nanoparticle biosynthesis mechanism, the conditions to control the size/shape and monodispersity of particles, and microbiological reaction rate enhancement using nanoparticles as catalysts are presented. The current limitations and future scope for specific research are also discussed.  相似文献   
6.
Nanotechnologies have been called the "Next Industrial Revolution." At the same time, scientists are raising concerns about the potential health and environmental risks related to the nano-sized materials used in nanotechnologies. Analyses suggest that current U.S. federal regulatory structures are not likely to adequately address these risks in a proactive manner. Given these trends, the premise of this paper is that state and local-level agencies will likely deal with many "end-of-pipe" issues as nanomaterials enter environmental media without prior toxicity testing, federal standards, or emissions controls. In this paper we (1) briefly describe potential environmental risks and benefits related to emerging nanotechnologies; (2) outline the capacities of the Toxic Substances Control Act, the Clean Air Act, the Clean Water Act, and the Resources Conservation and Recovery Act to address potential nanotechnology risks, and how risk data gaps challenge these regulations; (3) outline some of the key data gaps that challenge state-level regulatory capacities to address nanotechnologies' potential risks, using Wisconsin as a case study; and (4) discuss advantages and disadvantages of state versus federal approaches to nanotechnology risk regulation. In summary, we suggest some ways government agencies can be better prepared to address nanotechnology risk knowledge gaps and risk management.  相似文献   
7.
Abstract

The effects of suspensions of zinc oxide nanoparticles at concentrations between 100 and 500?mg L?1 on germination of Capsicum chinense seeds and vigor of plants were evaluated using a randomized complete design with four replications, resulting in increased germination and improved development of lengths of plumule and radicle. The activities of peroxidase, catalase and ascorbate peroxidase were determined, showing that at all concentrations the activities of the former two enzymes were increased, whereas the activity of the latter was reduced at 500?mg L?1. Pretreatments of seeds with ZnO nanoparticles can improve germination and development of seedlings and the activities of antioxidant enzymes.  相似文献   
8.
Heat pipe cooling is widely used in computer processors. Advances in microprocessor technology have resulted in reduced heat transfer surface area. Maintaining an efficient cooling process is therefore challenging. The main goal of this experimental study is to perform a parametric study on heat pipe performance using nanofluids. Nanofluids of 1 and 3 vol% of alumina nanoparticles of 20–50 nm diameters in deionized water versus deionized water as a base fluid were considered in the present study. The nanofluids are prepared in our laboratory using two-step method. The nanofluids thermal properties are measured to confirm the properties enhancement that could indicate a corresponding performance enhancement of the heat pipe. A 10 mm inner diameter, 200 mm long brass tube with 50 mm long evaporator, and 50 mm long water cooled condenser were used. Heat pipe wall temperature is reduced with nanofluids as is the temperature difference between the evaporator and condenser. The thermal diffusivity of the nanofluids is increased by 10%. The pipe pressure in case of deionized water was higher than the corresponding one for the nanofluids by 20–32%.  相似文献   
9.
This paper describes a study on the use of a polypropylene (PP)/layered silicate nanocomposite as packaging film, agricultural film, and automotive panels. The study’s main question was “Are the environmental impacts and costs throughout the life cycle of nanocomposite products lower than those of products manufactured from conventional materials?” The conventional (benchmark) materials studied were pure polypropylene as packaging film, pure polyethylene as agricultural film, and glass fiber-reinforced polypropylene as automotive panels. In all three cases, the use of the PP nanocomposite resulted in a reduction of the amount of material used, while ensuring the same functionality. Material reduction was estimated using Ashby’s material indices and amounted to ?9% for packaging film, ?36.5% for agricultural film, and ?1.25% for automotive panels. It goes without saying that a product’s impact on the environment will decrease when less material is used. The production and incorporation of nanoparticles, however, may have additional impacts. We found clear environmental benefits throughout the entire life cycle when the PP nanocomposite is used in the manufacture of agricultural film. We noted some cost benefits when the nanocomposite is used in the production of agricultural film and automotive panels. If the price of nanoclay is at most €5,000 tonne then the cost of nanocomposite packaging film is also lower than that of the conventionally produced product.  相似文献   
10.
Public participation has become standard practice in both environmental communication and science and technology studies, with such engagement increasingly moving “upstream” to the early stages of technological development. One framework for these activities is anticipatory governance, in which foresight and public and stakeholder engagement are used to reflect on—and direct—the impacts of new technology. In this essay we draw on our experience of anticipatory governance, in the shape of the “NanoFutures” project on energy futures, to present a reflexive analysis of engagement and deliberation. We draw out five tensions of the practice of deliberation on energy technologies. Through tracing the lineages of these dilemmas, we discuss some of the implications of these tensions for the practice of civic engagement and deliberation in a set of questions for this community of practitioner-scholars.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号