首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
综合类   3篇
基础理论   7篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2000年   2篇
  1995年   1篇
排序方式: 共有10条查询结果,搜索用时 281 毫秒
1
1.
The impact of a parasitic infestation may be influenced by nutritional state, in both individuals and colonies. This study examined the interaction between pollen storage and the effects of an infestation by the mite, Varroa jacobsoni Oudemans, in colonies of the honey bee, Apis mellifera L. We manipulated the pollen storage and mite infestation levels of colonies, and measured pollen foraging and brood rearing. Increased pollen stores decreased both the number of pollen foragers and pollen load size, while initially at least foragers from colonies with moderate infestations carried smaller pollen loads than those from lightly infested colonies. Over the course of the experiment, all colonies significantly increased pollen-foraging rates and pollen consumption, which was presumably a seasonal effect. Lightly infested colonies exhibited a larger increase in pollen forager number than moderately infested colonies, suggesting that more intense mite infestations compromised forager recruitment. Brood production was not affected by the addition of pollen, but moderately infested colonies were rearing significantly less brood by the end of the experiment than lightly infested colonies. Furthermore, the efficiency with which colonies converted pollen to brood decreased as the pollen storage level decreased and the infestation level increased. The results of this study may indicate that honey bee colonies adaptively alter brood-production efficiency in response to parasitic infestations and seasonal changes. Received: 3 May 1999 / Received in revised form: 14 September 1999 / Accepted: 25 September 1999  相似文献   
2.
Studies of the influence of parasites on host fitness generally conclude that parasites have a strong negative effect on their hosts. In this study, we have investigated experimentally the role of Polymorphus minutus, an acanthocephalan parasite, on the salinity tolerance of the freshwater amphipod Gammarus roeseli, one of its intermediate hosts. Unexpectedly, P. minutus-infected gammarids were more tolerant to salinity stress than uninfected ones. The mean lethal salt concentrations for 50% mortality of hosts tested were 17.3 (infected) and 9.7 g/L (uninfected). The parasitic load (one or two parasites per host) did not affect the result. The size of hosts had no significant influence on the salinity tolerance of either infected or uninfected gammarids. The mobility of all types of gammarid decreased when the salinity exceeded 9.0 g/L, but there was no significant difference between infected and uninfected gammarids. We discuss the higher salinity tolerance of infected amphipods in relation to O2 consumption and osmoregulation. Finally, we demonstrate that the salinity tolerance is enhanced in the parasitized amphipod but without a significant change in behavior or an osmoregulatory adjustment.  相似文献   
3.
The signaling function of sexually selected traits, such as carotenoid-dependent avian plumage coloration, has received a great deal of recent attention especially with respect to parasitism and immunocompetence. We argue that parasite-mediated models of sexual selection may have an implicit temporal component that many researchers have ignored. For example, previous studies have demonstrated that carotenoid-dependent traits can signal past parasite exposure, current levels of parasitism, or the ability of individuals to manage parasitic infections in the future. We examined repeated measures of carotenoid-dependent skin color and blood parasitism in American kestrels (Falco sparverius) to distinguish whether coloration might signal current parasitism or the potential to deal with infections in the future. We found no evidence that coloration was related to current levels of parasitism in either sex. However, coloration of males significantly predicted their response to parasitism; males with bright orange coloration during prelaying, when mate choice is occurring, were more likely than dull yellow males to reduce their levels of infection by the time incubation began. Coloration during prelaying may advertise a male’s health later in the breeding season. For kestrels, the ability to predict future health would be highly beneficial given the male’s role in providing food to his mate and offspring. Coloration of females was not a significant predictor of parasitism in the future, and we provide several possible explanations for this result.  相似文献   
4.
Mutualisms can be exploited by parasites—species that obtain resources from a partner but provide no services. Though the stability of mutualisms in the presence of such parasites is under intensive investigation, we have little information on life history traits that allow a species to be a successful mutualist or rather a parasite, particularly in cases where both are closely related. We studied the exploitation of Acacia myrmecophytes by the ant, Pseudomyrmex gracilis, contrasting with the mutualistic ant Pseudomyrmex ferrugineus. P. gracilis showed no host-defending behavior and had a negative effect on plant growth. By preventing the mutualist from colonization, P. gracilis imposes opportunity costs on the host plant. P. gracilis produced smaller colonies with a higher proportion of alates than did the mutualist and thus showed an “r-like” strategy. This appears to be possible because P. gracilis relies less on host-derived food resources than does the mutualist, as shown by behavioral and stable isotope studies. We discuss how this system allows the identification of strategies that characterize parasites of mutualisms.  相似文献   
5.
The incidence of cannibalism of larval Spodoptera frugiperda (Lepidoptera: Noctuidae) on maize under field conditions was investigated using field cages. Cannibalism was found to account for approximately 40% mortality when maize plants were infested with two or four fourth-instar larvae over a 3-day period. Field trials examined the effect of larval density on the prevalence of natural enemies of S. frugiperda. The abundance of predators (earwigs, staphylinids, other predatory beetles, and Chrysoperla spp.) was significantly greater on maize plants with higher levels of larval feeding damage, while the relationship between predator abundance and number of S. frugiperda larvae per plant was less clear. As larval damage is probably a more reliable indicator of previous larval density than numbers collected at an evaluation, this indicates that predation risk will be greater for larvae living in large groups. Parasitism accounted for 7.1% mortality of larvae in sorghum, and involved six species of Hymenoptera and Tachinidae. There was no effect of larval density or within-plant distribution on the probability of larval attack by parasitoids. The selective benefits of cannibalism, in relation to the risk of predation and parasitism, are discussed. Received: 23 March 2000 / Accepted: 24 June 2000  相似文献   
6.
Microplitis croceipes (Hymenoptera: Braconidae) is a larval parasitoid of Helicoverpa/Heliothis spp. In the course of mass rearing of M. croceipes, we found that females oviposited in the conspecific adults in rearing cages. When 20 pairs of inexperienced females and males or of experienced females and males were reared in a cage, the males lived for 14–15 days and the females for 18–20 days on average. At their death, 37–42% of the males and 50–57% of the females contained conspecific eggs or first instar larvae in their abdominal cavity. When two of inexperienced females met on a host-infested leaf of soybean, they attempted to sting each other. Of the attacked females, 30% contained a conspecific egg laid in their abdomen. In abdominal cavity of the adults parasitized by a conspecific female, the majority of the parasitoid eggs laid disappeared within 1 day after oviposition. Only 10–30% of the parasitoid eggs laid in conspecific adults hatched 3–4 days after oviposition, but those larvae never molted to second instar. When the adults were stung by one or two conspecific females, their subsequent longevity was significantly shorter than that for the control adults. Oviposition in conspecific adults may be prevalent in other parasitic wasps that quickly oviposit without intensive host examination, and have cuticle and size of abdomen to be stung by conspeicifcs.  相似文献   
7.
For parasitoids, host finding is a central problem that has been solved through a variety of behavioural mechanisms. Among species in which females do not make direct contact with hosts, as is the case for many dipteran parasitoids, eggs must be laid in an appropriate part of the host habitat. The asilid fly Mallophora ruficauda lays eggs in clusters on tall vegetation. Upon eclosion, pollen-sized larvae fall and parasitize soil-dwelling scarab beetle larvae. We hypothesized that wind dissemination of M. ruficauda larvae is important in the host-finding process and that females lay eggs at heights that maximize parasitism of its concealed host. Through numerical and analytical models resembling those used to describe seed and pollen wind dispersal, we estimated an optimal oviposition height in the 1.25- to 1.50-m range above the ground. Our models take into account host distribution, plant availability and the range over which parasitic larvae search for hosts. Supporting our findings, we found that the results of the models match heights at which egg clusters of M. ruficauda are found in the field. Generally, work on facilitation of host finding using plants focuses on plants as indicators of host presence. We present a case where plants are used in a different way, as a means of offspring dispersal. For parasitoids that carry out host searching at immature stages rather than as adults, plants are part of a dissemination mechanism of larvae that, as with minute seeds, uses wind and a set of simple rules of physics to increase offspring success.  相似文献   
8.
Sensory traps are signal mimics that elicit out-of-context behaviors by exploiting the adaptive, neural responses of signal receivers. Sensory traps have long been invoked in studies of mate and prey attraction, but the possible roles of sensory traps in mutualisms (cooperation between species) have yet to be thoroughly examined. Our review identifies four candidate roles for sensory traps in the evolution of mutualistic interactions: reassembly, error reduction, enforcement, and cost reduction. A key consequence of sensory traps is that they limit the applicability of partner choice and biological market models of mutualism. We conclude by suggesting that an important research topic in the evolution of cooperation should be to identify any mechanisms that increase the truthfulness of communication between cooperating species.  相似文献   
9.
Cooperatively breeding birds might be expected to suffer from higher costs of parasitism than pair-breeding species because of two aspects of their ecology which should facilitate horizontal transmission and possibly select for higher parasite virulence: first, they interact regularly with more individuals than pair-breeding species, and second, these individuals are commonly close relatives that could share similar resistance alleles. This hypothesis predicts that cooperative breeders should invest relatively more in immune defence than closely related species which breed in pairs. I tested this prediction comparatively in African birds by examining the response of the immune system to the mitogenic lectin, phytoahemagglutinin (PHA response) in relation to cooperative breeding. Among 66 species, of which 18 breed cooperatively, PHA response was significantly higher in cooperatively breeding species. This association appeared not to be confounded by body size, clutch size, nest position, coloniality or similarity owing to common phylogenetic descent. These results suggest that cooperatively breeding birds may have been selected to invest more than pair-breeders in defences against parasites. If so, then additional costs of philopatry and helping behaviour might be imposed on breeders, helpers and offspring.  相似文献   
10.
Abstract In a foraging column of the leaf-cutting ant Atta cephalotes, minim workers (the smallest worker subcaste) hitchhike on leaf fragments carried by larger workers. It has been demonstrated that they defend leaf carriers against parasitic phorid flies. The present study examines the cues used by the potential hitchhikers to locate leaf carriers. As recently reported, foraging workers stridulate while cutting a leaf fragment, and the stridulatory vibrations serve as closerange recruitment signals. We tested the hypothesis that these plant-borne stridulatory vibrations are used by the potential hitchhikers to locate workers engaged in cutting. Three different lines of evidence support this view. Firstly, the repetition rate of the stridulations produced by foraging workers increases significantly as foragers maneuver the leaf fragment into the carrying position and walk loaded to the nest. This is the moment when hitchhikers usually climb on the leaf. Although the leaf-borne stridulatory vibrations are considerably attenuated when transmitted through the workers' legs, they can nevertheless be detected at short distances by minims. This subcaste is several times more sensitive to substrate-borne vibrations than larger workers. Secondly, when a stridulating and a silent leaf were simultaneously presented at the foraging site, minim workers spent significantly more time on the stridulating than on the silent leaf. Thirdly, hitchhiking was more frequent in leaf carriers which cut fragments out of the stridulating leaf than in those cutting the silent leaf.Abstract In a foraging column of the leaf-cutting ant Atta cephalotes, minim workers (the smallest worker subcaste) hitchhike on leaf fragments carried by larger workers. It has been demonstrated that they defend leaf carriers against parasitic phorid flies. The present study examines the cues used by the potential hitchhikers to locate leaf carriers. As recently reported, foraging workers stridulate while cutting a leaf fragment, and the stridulatory vibrations serve as closerange recruitment signals. We tested the hypothesis that these plant-borne stridulatory vibrations are used by the potential hitchhikers to locate workers engaged in cutting. Three different lines of evidence support this view. Firstly, the repetition rate of the stridulations produced by foraging workers increases significantly as foragers maneuver the leaf fragment into the carrying position and walk loaded to the nest. This is the moment when hitchhikers usually climb on the leaf. Although the leaf-borne stridulatory vibrations are considerably attenuated when transmitted through the workers' legs, they can nevertheless be detected at short distances by minims. This subcaste is several times more sensitive to substrate-borne vibrations than larger workers. Secondly, when a stridulating and a silent leaf were simultaneously presented at the foraging site, minim workers spent significantly more time on the stridulating than on the silent leaf. Thirdly, hitchhiking was more frequent in leaf carriers which cut fragments out of the stridulating leaf than in those cutting the silent leaf.Communicated by P. Pamilo  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号