首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   4篇
基础理论   5篇
污染及防治   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
We report on a revisit in 2009 to sites where vegetation was recorded in 1967 and 1970 on Disko Island, West Greenland. Re-sampling of the same clones of the grass Phleum alpinum after 39 years showed complete stability in biometrics but dramatic earlier onset of various phenological stages that were not related to changes in population density. In a fell-field community, there was a net species loss, but in a herb-slope community, species losses balanced those that were gained. The type of species establishing and increasing in frequency and/or cover abundance at the fell-field site, particularly prostrate dwarf shrubs, indicates a possible start of a shift towards a heath, rather than a fell-field community. At the herb-slope site, those species that established or increased markedly in frequency and/or cover abundance indicate a change to drier conditions. This is confirmed both by the decrease in abundance of Alchemilla glomerulans and Epilobium hornemanii, and the drying of a nearby pond. The causes of these changes are unknown, although mean annual temperature has risen since 1984.  相似文献   
2.
The available data on climate change over the past century indicate that the Earth is warming. Important biological events, including changes in plant phenology, have been reported in many parts of the world. We have explored some of these phenological changes in more than 650 temperate species, which have indicated the average advancement of 1.9 days per decade in spring events and average delay of 1.4 days per decade in autumnal events. Thus the average length of the growing season has extended by 3.3 days per decade.  相似文献   
3.
This study forms part of the Action Plan for the Conservation of Marine Vegetation in the Mediterranean SEa (United Nation Environmental Program). It was carried out in June 2000 in the Farwà Lagoon, Libya. The mapping of the main benthic vegetation was achieved by compiling the field observations (transect method), and remote sensing of SPOT satellite images. The phytobenthos in the Farwà lagoon covers an area of 1820 ha (65%). Three benthic macrophyte species dominate, namely the marine phanerogamsCymodocea nodosa andPosidonia oceanica, and the algaCaulerpa prolifera. DeadPosidonia oceanica leaves (litter) form veritable mounds in the vicinity of the openings leading to open sea. These leaves, which come from the coastal sea, are brought into the lagoon by currents and tides; their decomposition will lead to high oxygen consumption and the release of hydrogen sulphide. The phenological data ofPosidonia oceanica shoots sampled in the lagoon are similar to those from other stations in the Mediterranean. Conversely, the lepidochronological parameters of shoots sampled in the central part of the lagoon exhibit values that are substantially higher than those generally recorded in the Mediterranean. The mean number of leaves produced annually is 9.9 (mean value for the Mediterranean: 7.5) and the rhizome growth rate is of 35.7 mm.yr−1 (mean value for the Mediterranean: 7.5 mm.yr−1). This hypersaline environment would seem to provide optimum growth conditions for the speciesPosidonia oceanica.  相似文献   
4.
For many species in seasonal environments, warmer springs associated with anthropogenic climate change are causing phenological changes. Within ecological communities, the timing of interactions among species may be altered if the species experience asymmetrical phenological shifts. We present a model that examines the consequences of changes in the relative timing of herbivory and pollination in a community of herbivores and pollinators that share a host plant. Our model suggests that phenological shifts can alter the abundances of these species and, in some cases, their population dynamics. If historical patterns of interactions in a community change and herbivores become active before pollinators, the community could see a reduction in pollinators and an increase in herbivores, while if pollinators become active before herbivores, there could be a loss of stable coexistence. Previous studies have warned of the potential for climate change to cause large phenological mismatches whereby species that depend on one another become so separated in time that they can no longer interact. Our results suggest that climate change-induced phenological shifts can have a major impact on communities even in cases where complete phenological mismatches do not occur.  相似文献   
5.
Savannas are ecosystems known for their high environmental and economic value. They cover at least 20% of the global land surface and, in some cases, can act as a boundary between tropical rainforest and deserts. Water is an important determinant of savanna ecosystems.In this paper, we present a theoretical stochastic model of root competition for water, which couples, soil water availability, phenology, and root and shoot architecture applied to three Neotropical savanna grasses. Soil moisture was simulated using a daily balance, as proposed by Rodriguez-Iturbe et al. [Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., Cox, D.R., 1999. Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proc. R. Soc. London, Ser. A 455, 3789–3805.]. To simulate rainfall stochasticity, we used daily precipitation data from the airport weather station in the State of Barinas, Venezuela, for the period 1991–2007. Competition among neighbouring plants took into account the spatial distribution of the individuals. As a final step, the model allowed us to calculate the shoot dynamic of the species as a function of soil water availability.Using these data, we compared the behaviour of isolated plants, pairs and trios, and we found below-ground competition to be a fundamental component of global (shoot + root) competition. Finally, our model suggests various circumstances that allow poor competitor plants to coexist in competition for water with more successful competitors. Apparently, this is not only due to transpiration rates, but also to differences in shoot emergence and shoot growth.  相似文献   
6.
Plant–pollinator interaction networks are characterized by several features that cannot be obtained from a totally random network (e.g. nestedness, power law distribution of degree specialization, temporal turnover). One reason is that both plants and pollinators are active for only a part of the year, and so a plant species flowering in spring cannot interact with a pollinator species that is active only in autumn. In this paper we build a stochastic model to simulate the plant–pollinator interaction network, taking into account the duration of activity of each species. To build the model we used an empirical plant–pollinator network from a Mediterranean scrub community surveyed over four years. In our simulated annual cycle we know which plant and pollinator species are active, and thus available to interact. We can obtain simulated plant–pollinator interaction networks with properties similar to the real ones in two different ways: (i) by assuming that the frequency distribution of both plant and pollinator duration of activity follow an exponential function, and that interaction among temporally coexisting species are totally random, and (ii) by assuming more realistic frequency distributions (exponential for pollinators, lognormal for plants) and that the interaction among coexisting species is occurring on a per capita basis. In the latter case we assume that there is a positive relationship between abundance and duration of activity. In our model the starting date of the species activity had little influence on the network structure. We conclude that the observed plant–pollinator network properties can be produced stochastically, and the mechanism shaping the network is not necessarily related to size constraints. Under such conditions co-evolutionary explanations should be given with caution.  相似文献   
7.
Monitoring Plant Phenology Using Digital Repeat Photography   总被引:1,自引:0,他引:1  
Repeated observations of plant phenology have been shown to be important indicators of global change. However, capturing the exact date of key events requires daily observations during the growing season, making phenologic observations relatively labor intensive and costly to collect. One alternative to daily observations for capturing the dates of key phenologic events is repeat photography. In this study, we explored the utility of repeat digital photography for monitoring phenologic events in plants. We provide an illustration of this approach and its utility by placing observations made using repeat digital imagery in context with local meteorologic and edaphic variables. We found that repeat photography provides a reliable, consistent measurement of phenophase. In addition, digital photography offers advantages in that it can be mathematically manipulated to detect and enhance patterns; it can classify objects; and digital photographs can be archived for future analysis. In this study, an estimate of greenness and counts of individual flowers were extracted by way of mathematic algorithms from the photo time series. These metrics were interpreted using meteorologic measurements collected at the study site. We conclude that repeat photography, coupled with site-specific meteorologic measurements, could greatly enhance our understanding environmental triggers of phenologic events. In addition, the methods described could easily be adopted by citizen scientists and the general public as well as professionals in the field.  相似文献   
8.
植被物候是气候变化对生物圈产生长期或短期影响的重要指示因子。气候变化已经明显改变了许多物种的营养生长和繁殖物候,尤其是在温带地区。研究温带森林物候变化及其对全球变暖的响应,对认识森林物种共存,协同进化以及森林保护和经营等有重要意义。通过概述温带森林下物候研究的进展发现,光照和积温是影响木本植物展叶及繁殖物候的关键因素,林下层树木通过更早展叶,以尽量减少生长季林冠层遮阴对下层树木生长的影响,更早时期开花的树木具有从顶部向四周次第开花的时空格局,林冠层树种开花具有较好的同步性。而草本植物的物候通常受融雪时间和冠层动态的影响更大,并且,温带森林下不同生活史对策的草本植物的物候特征对气候变化的响应也不尽相同,存在明显的季节动态。繁殖物候、光照的季节变化、光合特征、授粉成功之间的联系决定了林下不同繁殖特性的草本植物的繁殖成功率。量化的、多指标、多对象的定位监测是精准物候研究的基础,物候变化的机理和建立可预测的物候模型将是未来研究的重点。  相似文献   
9.
In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO(2) originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.  相似文献   
10.
Reed beds of Phragmites australis in the River Amudarya delta near the Aral Sea constitute permanent breeding areas of the Asian Migratory locust, Locusta migratoria migratoria. Every year, thousands of hectares are treated with broad-spectrum insecticides to prevent locust swarms from damaging crops in adjacent areas. To devise efficient locust monitoring and management plans, accurate and updated information about the spatial distribution of reeds is necessary. Given the vast geographic extent of the delta, traditional, ground survey methods are inadequate. Remotely sensed data collected by the MODIS sensor aboard the TERRA satellite provide a useful tool to characterize the spatial distribution of reeds. Multi-temporal MODIS data, collected at different times of the growing season, were used to generate spectral-temporal signatures for reeds and other land cover classes. These spectral-temporal signatures were matched with reed phenology. MODIS information was digitally classified to generate a land cover map with an overall accuracy of 74%. MODIS data captured 87% of the ground-verified reed locations. Estimates derived from MODIS data indicate that 18% of the study area was covered by reeds. However, high commission error resulted from misclassification of reeds mixed with shrubs class and shrubs class as reeds. This could have resulted in overprediction of the area covered by reeds. Additional research is needed to minimize the overlap between reeds and other vegetation classes (shrubs, and reed and shrub mix). Nevertheless, despite its relatively low spatial resolution (250 m), multi-temporal MODIS data were able to adequately capture the distribution of reeds. Instead of blanketing the fragile wetland ecosystem of the Amudarya delta with chemical anti-locust treatments, plant protection specialists can use this information to devise ecologically sound pest management plans aimed at reducing the adverse environmental impact in the zone of the Aral Sea ecological catastrophe. MODIS methodology to identify reed stands can be applicable to the Migratory locust habitats in other geographic areas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号