首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
综合类   1篇
基础理论   2篇
  2019年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We examined how long-term operation of anaerobic–oxic and anaerobic–anoxic sequencing batch reactors(SBRs) affects the enhanced biological phosphorus removal(EBPR)performance and sludge characteristics. The microbial characteristics of phosphorus accumulating organism(PAO) and denitrifying PAO(DPAO) sludge were also analyzed through a quantitative analysis of microbial community structure. Compared with the initial stage of operation characterized by unstable EBPR, both PAO and DPAO SBR produced a stable EBPR performance after about 100-day operation. From day 200 days(DPAO SBR)and 250 days(PAO SBR) onward, sludge granulation was observed, and the average granule size of DPAO SBR was approximately 5 times larger than that of PAO SBR. The DPAO granular sludge contained mainly rod-type microbes, whereas the PAO granular sludge contained coccus-type microbes. Fluorescence in situ hybridization analysis revealed that a high ratio of Accumulibacter clade I was found only in DPAO SBR, revealing the important role of this organism in the denitrifying EBPR system. A pyrosequencing analysis showed that Accumulibacter phosphatis was present in PAO sludge at a high proportion of 6%,whereas it rarely observed in DPAO sludge. Dechloromonas was observed in both PAO sludge(3.3%) and DPAO sludge(3.2%), confirming that this organism can use both O_2 and NO_3~- as electron acceptors. Further, Thauera spp. was identified to have a new possibility as denitrifier capable of phosphorous uptake under anoxic condition.  相似文献   
2.
High strength sugar refinery wastewater was treated in a mesophilic UASB. Pyrosequencing reveals microbial community succession with OLR increase. Diversity of microbial communities in OLR12 is much higher than those in OLR36 and OLR54.0 kgCOD/(kg VSS·d). Fermentative bacteria could deal with increasing OLR through the increase of microbial diversity and quantity. Hydrogen-producing acotogens and methanogens mainly coped with high OLR shocks by increasing the quantity of community The performance and microbial community structure in an upflow anaerobic sludge blanket reactor (UASB) treating sugar refinery wastewater were investigated. The chemical oxygen demand (COD) removal reached above 92.0% at organic loading rates (OLRs) of 12.0–54.0 kgCOD/(m3·d). The volatile fatty acids (VFAs) in effluent were increased to 451.1 mg/L from 147.9 mg/L and the specific methane production rate improved by 1.2–2.2-fold as the OLR increased. The evolution of microbial communities in anaerobic sludge at three different OLRs was investigated using pyrosequencing. Operational taxonomic units (OTUs) at a 3% distance were 353, 337 and 233 for OLR12, OLR36 and OLR54, respectively. When the OLR was increased to 54.0 kgCOD /(m3·d) from 12.0 kgCOD/(m3·d) by stepwise, the microbial community structure were changed significantly. Five genera (Bacteroides, Trichococcus, Chryseobacterium, Longilinea and Aerococcus) were the dominant fermentative bacteria at the OLR 12.0 kgCOD/(m3·d). However, the sample of OLR36 was dominated by Lactococcus, Trichococcus, Anaeroarcus and Veillonella. At the last stage (OLR= 54.0 kgCOD/(m3·d)), the diversity and percentage of fermentative bacteria were markedly increased. Apart from fermentative bacteria, an obvious shift was observed in hydrogen-producing acetogens and non-acetotrophic methanogens as OLR increased. Syntrophobacter, Geobacter and Methanomethylovorans were the dominant hydrogen-producing acetogens and methylotrophic methanogens in the samples of OLR12 and OLR36. When the OLR was increased to 54.0 kgCOD/(m3·d), the main hydrogen-producing acetogens and hydrogenotrophic methanogens were substituted with Desulfovibrio and Methanospirillum. However, the composition of acetotrophic methanogens (Methanosaeta) was relatively stable during the whole operation period of the UASB reactor.  相似文献   
3.
Wet deposition scavenges particles and particle-associated bacteria from the air column, but the impact of raindrops on various surfaces on Earth causes emission of surface-associated bacteria into the air column. Thus, after rainfall, these two mechanisms are expected to cause changes in airborne bacterial community composition (BCC). In this study, aerosol samples were collected at a suburban site in Seoul, Korea before and after three heavy rainfall events in April, May, and July 2011. BCC was investigated by pyrosequencing the 16S rRNA gene in aerosol samples. Interestingly, the relative abundance of non-spore forming Actinobacteria operational taxonomic units (OTUs) was always higher in post-rain aerosol samples. In particular, the absolute and relative abundances of airborne Propionibacteriaceae always increased after rainfall, whereas those of airborne Firmicutes, including Carnobacteriaceae and Clostridiales, consistently decreased. Marine bacterial sequences, which were temporally important in aerosol samples, also decreased after rainfall events. Further, increases in pathogen-like sequences were often observed in post-rain air samples. Rainfall events seemed to affect airborne BCCs by the combined action of the two mechanisms, with potentially adverse effects on human and plant health.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号