首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2023年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Wild bees are critical for multiple ecosystem functions but are currently threatened. Understanding the determinants of the spatial distribution of wild bee diversity is a major research gap for their conservation. We modeled wild bee α and β taxonomic and functional diversity in Switzerland to uncover countrywide diversity patterns and determine the extent to which they provide complementary information, assess the importance of the different drivers structuring wild bee diversity, identify hotspots of wild bee diversity, and determine the overlap between diversity hotspots and the network of protected areas. We used site-level occurrence and trait data from 547 wild bee species across 3343 plots and calculated community attributes, including taxonomic diversity metrics, community mean trait values, and functional diversity metrics. We modeled their distribution with predictors describing gradients of climate, resource availability (vegetation), and anthropogenic influence (i.e., land-use types and beekeeping intensity). Wild bee diversity changed along gradients of climate and resource availability; high-elevation areas had lower functional and taxonomic α diversity, and xeric areas harbored more diverse bee communities. Functional and taxonomic β diversities diverged from this pattern, with high elevations hosting unique species and trait combinations. The proportion of diversity hotspots included in protected areas depended on the biodiversity facet, but most diversity hotspots occurred in unprotected land. Climate and resource availability gradients drove spatial patterns of wild bee diversity, resulting in lower overall diversity at higher elevations, but simultaneously greater taxonomic and functional uniqueness. This spatial mismatch among distinct biodiversity facets and the degree of overlap with protected areas is a challenge to wild bee conservation, especially in the face of global change, and calls for better integrating unprotected land. The application of spatial predictive models represents a valuable tool to aid the future development of protected areas and achieve wild bee conservation goals.  相似文献   
2.
Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty‐one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within‐ and across‐taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. Selección de Múltiples Especies Paraguas para la Diversidad Funcional y Taxonómica para Representar la Biodiversidad Urbana  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号