首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   2篇
污染及防治   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Oligotrophic mountain meadows are threatened biodiversity hotspots throughout Europe. The traditional summer hay-making followed by autumn grazing is no longer economic and question is whether alternative managements can maintain both plant species and functional diversity typical of these habitats. In the Bohemian Forest Mts., we applied three treatments (mowing once a year - i.e., cutting and removing the biomass, mulching once a year - cutting and leaving the crushed biomass to decompose in situ, fallowing - no cutting) in order to assess temporal changes in meadow vegetation, plant trait composition and biomass production in a 13-year experiment. We recorded for each species twenty-five traits as to be most informative of plant strategies related to growth, resource acquisition and carbon-water economy. We compared different components of trait composition (community averages that mostly reflect traits of dominant species vs. the Rao index of functional diversity that reflects trait dissimilarity among species) and their impact on biomass production. We show that mulching promotes species and functional diversity by facilitating heliophilous forbs and legumes with more acquisitive strategies in resource use and release, e.g., higher foliar N and P content. This occurs at the expense of tall grasses (with resource-retentive strategies, e.g., high leaf dry matter content) which dominate the mown and fallow plots. The divergence in most quantitative traits indicates that niche complementarity is the dominant assembly process in mulched plots, which can prevent competitive exclusion and enable species coexistence. The divergent development was detected only after 5-6 years. This slow floristic and functional response is caused by acidity of soil and severe mountain climate that preclude rapid responses of vegetation to land-use changes. We conclude that mulching represents a good compromise maintaining both plant species and functional diversity as well as a relatively high biomass production. Mowing without grazing leads to gradual nutrient loss and thus reduces the productivity and diversity in these oligotrophic ecosystems. Fallowing causes gradual loss in diversity by increased grass competition and litter accumulation.  相似文献   
2.
Habitat templet theory predicts that habitat provides the templet on which evolution shapes species’ multiple traits and thus their characteristic life-history strategies. By analysing entire trait communities (multiple species and traits) in this framework we can enhance our understanding of how species composition changes as environmental constraints vary across the landscape. Here, we study multiple traits of floodplain Orthoptera communities under the influence of two different sources of disturbance, land use and seasonal flooding.The application of two recently developed statistical techniques - qualitative RLQ analysis and subsequent fourth-corner permutation tests - revealed two different life history strategies in Orthoptera as a response to ecological disturbances, resulting from land use management and seasonal flooding. Orthoptera species seem to have developed two complementary strategies: (i) the high active dispersal-low reproduction strategy in intensive land use situations and (ii) the high passive dispersal-high reproduction strategy in areas with high flood disturbance. Disturbance gradients act as trait filters allowing only particular trait combinations i.e. species with particular preadaptations to survive, whereas others go regionally extinct. Reproduction and dispersal capacity seem to be inversely associated with the disturbance gradients. Ovariole number, taken as the measure for reproduction, showed significant phylogenetic signal, which could potentially confound this relationship. Nonetheless, RLQ analyses coupled with fourth-corner permutation tests proved a powerful tool to reveal and disentangle different evolutionary strategies.  相似文献   
3.
To detect effects of pesticides on non-target freshwater organisms the Species at risk (SPEARpesticides) bioindicator based on biological traits was previously developed and successfully validated over different biogeographical regions of Europe using species-level data on stream invertebrates. Since many freshwater biomonitoring programmes have family-level taxonomic resolution we tested the applicability of SPEARpesticides with family-level biomonitoring data to indicate pesticide effects in streams (i.e. insecticide toxicity of pesticides). The study showed that the explanatory power of the family-level SPEAR(fm)pesticides is not significantly lower than the species-level index. The results suggest that the family-level SPEAR(fm)pesticides is a sensitive, cost-effective, and potentially European-wide bioindicator of pesticide contamination in flowing waters. Class boundaries for SPEARpesticides according to EU Water Framework Directive are defined to contribute to the assessment of ecological status of water bodies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号