首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   1篇
基础理论   1篇
污染及防治   4篇
  2019年   1篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
低浓度TCC/TCS对废水生化处理系统的影响效应   总被引:1,自引:0,他引:1  
针对TCC/TCS广泛应用于洗涤化妆用品行业,同时带来对废水生化处理系统的毒性问题,采用混凝—厌氧—好氧处理工艺,研究TCC/TCS对生化处理系统的影响效应,并探讨系统的调控反馈机制,对于这类废水的处理工艺设计、工艺调控具有较高的参考价值。  相似文献   
2.
Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan "does not degrade fast" with its primary biodegradation half-life of "weeks" and ultimate biodegradation half-life of "months". Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period.  相似文献   
3.
4.
Constructed wetlands are a potential method for the removal of two pharmaceutical and personal care products from wastewater effluent. Triclosan (TCS; 5-chloro-2-[2,4-dichlorophenoxy]phenol) and triclocarban (TCC; 3,4,4′-trichlorocarbanillide) are antimicrobial agents added to a variety of consumer products whose accumulation patterns in constructed wetlands are poorly understood. Here, we report the accumulation of TCS, its metabolite methyl-triclosan (MTCS; 5-chloro-2-[2,4-dichlorophenoxy]), and TCC in wetland plant tissues and sediments. Three wetland macrophytes: Typha latifolia, Pontederia cordata, and Sagittaria graminea were sampled from a constructed wetland in Denton, Texas, USA. MTCS concentrations were below the method detection limit (MDL) for all species. TCS root tissue concentrations in T. latifolia were significantly greater than root concentrations in P. cordata (mean ± SE in ng g−1: 40.3 ± 11.3 vs. 15.0 ± 1.9, respectively), while for TCC, shoot tissue concentrations in S. graminea were significantly greater than in T. latifolia (22.8 ± 9.3 vs. 9.0 (MDL), respectively). For both TCS and TCC, T. latifolia root tissue concentrations were significantly greater than shoot concentrations (TCS: 40.3 ± 11.3 vs. 17.2 ± 0.2, TCC: 26.0 ± 3.6 vs. 9.0, (MDL)). TCC concentrations in P. cordata roots were significantly greater than in shoots (34.4 ± 5.3 vs. 15.4 ± 2.8, respectively). TCS concentrations in T. latifolia roots and sediments and TCC concentrations in sediments generally decreased from wetland inflow to outflow. To our knowledge, this is the first study documenting species and tissue specific differences in the accumulation of TCS and TCC in plants from an operational constructed wetland. The species specific differences in bioaccumulation suggest TCS and TCC removal from constructed wetlands could be enhanced through targeted plantings.  相似文献   
5.
Schebb NH  Ahn KC  Dong H  Gee SJ  Hammock BD 《Chemosphere》2012,87(7):825-827
The antibacterial triclocarban (TCC) concentrates in the cellular fraction of blood. Consequently, plasma levels are at least two-fold lower than the TCC amount present in blood. Utilizing whole blood sampling, a low but significant absorption of TCC from soap during showering is demonstrated for a small group of human subjects.  相似文献   
6.
TCS and TCC can be biodegraded during sewage sludge composting. Ventilation significantly accelerated the biodegradation of TCS and TCC in sludge. Composting can reduce the environmental risk of TCS and TCC in sewage sludge. Triclosan (TCS) and triclocarban (TCC) are widely used in home and personal care products as antimicrobial agents. After these products are used, TCS and TCC enter the terrestrial environment and pose a great risk to humans and animals. In this research, the biodegradation of TCS and TCC was investigated during sewage sludge composting with ventilation rates of 108, 92, and 79 m3/min. TCS and TCC were mainly biodegraded in the mesophilic and thermophilic phases, and the biodegradation rates improved with an increase in ventilation. After sewage sludge was composted for 16 days with forced ventilation (108 m3/min), the concentration of TCS decreased from 497.4 to 214.5 μg/kg, and the concentration of TCC decreased from 823.2 to 172.7 μg/kg. The biodegradation rates of TCS and TCC were 65.2% and 83.1%, respectively. However, after the sewage sludge was stacked for 16 days, the biodegradation rates of TCS and TCC were only 17.0% and 18.2%, respectively. The environmental risks of TCS and TCC in the sewage sludge piles significantly decreased after composting. In the sludge pile with a ventilation rate of 108 m3/min, the RQ values of TCS and TCC decreased from 8.29 and 20.58 to 3.58 and 4.32 after composting for 16 days, respectively. There is still a high risk if the sludge compost is directly used as a culture substrate. Nevertheless, the environmental risk could be decreased distinctly if a reasonable quantity of sludge compost is applied to land to ensure an RQ of<1 for TCS and TCC.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号