首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   1篇
污染及防治   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Populations of marine diatom Thalassiosira weissflogii were grown in continuous cultures enriched with f/2 medium. One of the two contrasting cultures (‘eutrophic’) received 5.6 times more nutrients than the other (‘oligotrophic’). Two mathematical models are analyzed to estimate eutrophication differences. The second model based on the Michaelis–Menten uptake and Droop growth shows that cells in the eutrophic culture should have about 56% higher content of silica which is the limiting nutrient. Diatom samples were prepared for the transmission electron microscopy after cells have been kept in chemostats for 37 days. The structure of diatom cells was investigated and a comparison is made between cells grown in oligotrophic and eutrophic conditions. In eutrophic culture, dividing cells were encountered more frequently while cell concentration was approximately equal in both chemostats. The central vacuole of cells in eutrophic culture accumulated dispersed and compact material from amorphous to spherical shape. In some cells the large central vacuole had fibrilar and peppered dense materials in addition to translucent granules, vesicules and multivesicular bodies. In the cytoplasm we found increased number of multivesicular bodies, dense and lucent granules some of which enclose membrane particles and lucent vesicules. Dense material depositions observed in the vacuole are also seen in the cytoplasm associated with organelles, mitochondria and plasmalemma. Cells have well-developed, active and slightly increased number of dictyosomes (5–6). Some dictyosomes with dense secretory material in the cistern are apparently engaged in a granule formation process. Functional significance of dense material in the central vacuole, which has not been observed in cells grown in oligotrophic condition, is discussed.  相似文献   
2.
Boojar MM  Goodarzi F 《Chemosphere》2007,67(11):2138-2147
This study was undertaken to identify the strategies and the status of antioxidant enzyme activities involved in three plant species tolerance against Cu-toxicity in copper mine. The following methods were used for evaluations in three wild type species; Datura stramonium, Malva sylvestris and Chenopodium ambrosioides. The level of chlorophyll and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) by spectrometry, malondialdehyde (MDA) and dityrosine by HPLC and the levels of Cu in tissues and soils by atomic absorption spectrometry (AAS).

Analysis showed that total and available copper were at toxic levels for plants growing on contaminated soil (zone 1). However, there were not any visual and conspicuous symptoms of Cu toxicity in plant species. Among three species, excess copper was transferred only into the D. stramonium and C. ambrosioides tissues. The C. ambrosioides accumulated Cu in roots and then in leaves, in which the leaves chloroplasts stored Cu around two times of vacuoles. In D. stramonium most of Cu was accumulated in leaves in which the storage rate in vacuoles and chloroplasts were 42% and 8%, respectively. In zone 1, the chlorophyll levels increased significantly in leaves of C. ambrosioides with respect to the same plant growing on uncontaminated soil (zone 2). There was insignificant decrease in chlorophyll content of D. stramonium leaves, collected from zone 1 with respect to zone 2. The D. stramonium and C. ambrosioides in zone 1, both revealed significant increase in their tissues antioxidant enzyme activities in comparison with the same samples of zone 2. There was significant elevation in oxidative damage biomarkers; MDA and dityrosine, when the aerial parts of D. stramonium in zone 1 were compared with the same parts of zone 2.

We concluded that there were different tolerance strategies in studied plant species that protected them against copper toxicity. In M. sylvestris, exclusion of Cu from the roots or its stabilization in the soil restricted Cu toxicity effects. On the other hand D. stramonium and C. ambrosioides, elevated their antioxidative enzyme activities in response to cu-toxicity. In addition, the species D. stramonium accumulated excess of Cu in leaves vacuoles.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号