首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
环保管理   2篇
综合类   2篇
基础理论   1篇
污染及防治   3篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
In the present work we compared the biological activity of DCF, 4′-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products (2-hydroxyphenylacetic acid; 2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline) which are produced during AOPs, such as ozonation and UV/H2O2. We also examined the interaction of DCF with chlorogenic acid (CGA). CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge. In the present experiment the evaluation of following parameters was performed: E. coli K-12 cells viability, growth inhibition of E. coli K-12 culture, LC50 and mortality of Chironomus aprilinus, genotoxicity, sodA promoter induction and ROS generation. In addition the reactivity of E. coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured. The results showed the influence of DCF, 4′-OHDCF and 5-OHDCF on E. coli K-12 cells viability and bacteria growth, comparable to AOPs by-products. The highest toxicity was observed for selected, tested AOPs by-products, in comparison to the DCF, 4′-OHDCF and 5-OHDCF. Genotoxicity assay indicated that 2,6-dichloroaniline (AOPs by-product) had the highest toxic effect. The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF, 4′-OHDCF and 5-OHDCF, compared to other tested compounds. We have also found that there is an interaction between chlorogenic acid and DCF, which resulted in increased toxicity of the mixture of the both compounds to E. coli K-12, comparable to parent chemicals. The strongest response of E. coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters, comparable to control sample was noticed. It indicates, that E. coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment. Due to toxicity and biological activity of tested DCF transformation products, there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.  相似文献   
2.
Because the large rivers of the Seine watershed have a low microbiological water quality, the main sources of fecal contamination were investigated in the present study. The inputs of the point (wastewater treatment plants (WWTPs) effluents) and non-point sources (surface runoff and soil leaching) of fecal bacteria were quantified for Escherichia coli and intestinal enteroccoci used as bacterial indicators. In order to assess the contamination through non-point sources, fecal indicators abundance was estimated in samples collected in small streams located in rural areas upstream from all point sources; these small rivers were characterized by the land use of their watershed. Bacterial indicator numbers were also measured in effluents of WWTPs, some using classical treatment (settling followed by activated sludge process) and some using an additional disinfection stage (UV irradiation). These data were used to estimate the respective importance of each type of source at the scale of the whole Seine river watershed taking into account the land use and the population density. It shows the predominant importance of the point sources of fecal indicator bacteria at the scale of the whole watershed. In a scenario in which activated sludge treatment would be complemented with UV in all WWTPs located in this watershed, the non-point sources of fecal indicator bacteria would be dominant.  相似文献   
3.
Picer M  Kovac T  Britvić S  Picer N 《Chemosphere》2001,44(8):1673-1683
The aim of this work was to evaluate the Ames assay and mixed function oxidase (MFO)-Induct Test used in parallel with chemical group tests (ECD fingerprint and PAH estimation) for the characterization of the organic pollution of water sediment materials. Sediment materials were collected from “clean” and relatively heavily polluted locations in the Middle Adriatic Sea, and from some locations in continental Croatia polluted with wastewaters from different enterprises. Characterization of the organic extracts of the sediment materials investigated was performed chemically using UV spectrofluorometry for the determination polyaromatic hydrocarbons (PAH) and gas chromatography for the determination of volatile EC detector sensitive materials. Genotoxic analysis of the extracts was performed using the MFO-Induct Test and mutagenicity testing using the Standard Plate Incorporation Test as described by Maron and Ames with Salmonella typhimurium TA 98. Measurement of the BaPMO enzyme activity in the livers of carp treated i.p. with total extracts of the sediment investigated confirmed that the methanol extracts generally contained more inducing matter than the petroleum ether extracts. Ames assay showed that for all the samples following the elimination of the sulfur, there was an increase in the number of revertants in comparison to the control number, which indicates that the samples contained mutagenic substances. The larger doses of extracts generally demonstrated cytotoxicity, as evidenced by a reduced number of spontaneous revertants in the Salmonella/Microsome Test. Investigation of the correlation of the chemical parameters with the biological parameter showed that the induction of BaPMO exhibited a statistically significant correlation with the level of the ECD fingerprint of the petroleum ether sediment extract.  相似文献   
4.
Wastewater-algal biomass is a promising option to biofuel production. However, microbial contaminants constitute a substantial barrier to algal biofuel yield. A series of algal strains, Nannochloris oculata and Chlorella vulgaris samples (n = 30), were purchased from the University of Texas, and were used for both stock flask cultures and flat-panel vertical bioreactors. A number of media were used for isolation and differentiation of potential contaminants according to laboratory standards (CLSI). Conventional PCR amplification was performed followed by 16S rDNA sequencing to identify isolates at the species level. Nanotherapeutics involving a nanomicellar combination of natural chitosan and zinc oxide (CZNPs) were tested against the microbial lytic groups through Minimum Inhibitory Concentration (MIC) tests and Transmission Electronic Microscopy (TEM). Results indicated the presence of Pseudomonas spp., Bacillus pumilus/ safensis, Cellulosimicrobium cellulans, Micrococcus luteus and Staphylococcus epidermidis strains at a substantial level in the wastewater-fed algal reactors. TEM confirmed the effectiveness of CZNPs on the lytic group while the average MICs (mg/mL) detected for the strains, Pseudomonas spp, Micrococcus luteus, and Bacillus pumilus were 0.417, 3.33, and 1.458, respectively. Conclusively, CZNP antimicrobials proved to be effective as inhibitory agents against currently identified lytic microbial group, did not impact algae cells, and shows promise for in situ interventions.  相似文献   
5.
Severe contamination of water resources including groundwater with iron (Fe) due to various anthropogenic activities has been a major environmental problem in industrial areas of Sri Lanka. Hence, the use of the obnoxious weed, water hyacinth (Eichhornia crassipes (Mart.) Solms) in constructed wetlands (floating aquatic macrophyte-based plant treatment systems) to phytoremediate Fe-rich wastewaters seems to be an appealing option. Although several studies have documented that hyacinths are good metal-accumulating plants none of these studies have documented the ability of this plant grown under different nutrient conditions to remove heavy metals from wastewaters. This paper, therefore, reports the phytoremediation efficiencies of water hyacinth grown under different nutrient conditions for Fe-rich wastewaters in batch-type constructed wetlands. This study was conducted for 15 weeks after 1-week acclimatization by culturing young water hyacinth plants (average height of 20+/-2cm) in 590L capacity fiberglass tanks under different nutrient concentrations of 1-fold [28 and 7.7mg/L of total nitrogen (TN) and total phosphorous (TP), respectively], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold with synthetic wastewaters containing 9.27Femg/L. Another set-up of hyacinths containing only Fe as a heavy metal but without any nutrients (i.e., 0-fold) was also studied. A mass balance was carried out to investigate the phytoremediation efficiencies and to determine the different mechanisms governing Fe removal from the wastewaters. Fe removal was largely due to phytoremediation mainly through the process of rhizofiltration and chemical precipitation of Fe2O3 and FeOH3 followed by flocculation and sedimentation. However, chemical precipitation was more significant especially during the first 3 weeks of the study. Plants grown in the 0-fold set-up showed the highest phytoremediation efficiency of 47% during optimum growth at the 6th week with a highest accumulation of 6707Femg/kg dry weight. Active effluxing of Fe back to the wastewater at intermittent periods and with time was a key mechanism of avoiding Fe phytotoxicity in water hyacinth cultured in all set-ups. Our study elucidated that water hyacinth grown under nutrient-poor conditions are ideal to remove Fe from wastewaters with a hydraulic retention time of approximately 6 weeks.  相似文献   
6.
用亚硫酸钠处理硅钢含铬废水的实验研究   总被引:3,自引:0,他引:3  
用亚硫酸钠为还原剂对硅钢含铬废水进行了试验研究.结果表明,当反应阶段和沉淀阶段溶液的PH分别控制在3~4和8~9,投加1.4倍理论量的亚硫酸钠,反应20min,沉淀2h,出水六价铬和总铬均可达到排放标准.同时还可制得重要的化工原料Cr2O3.  相似文献   
7.
The effects of dilution on the complexation of metal ions by the organic matter dissolved in effluent from a fishmeal factory were studied at pH 6.5, 7 and 7.5. The relationship between sample dilution and complexation capacity (determined by titration with copper(II) using DPASV to measure the concentration of labile copper) was linear and with a slope apparently independent of pH.  相似文献   
8.
In this study we evaluated genotoxicity and cytotoxicity of native samples of wastewaters (15 samples), surface waters (28 samples) and potable waters (8 samples) with the SOS/umuC assay with Salmonella typhimurium TA1535/pSK1002 and MTT assay with human hepatoma HepG2 cells. The genotoxicity of selected samples was confirmed with the comet assay with HepG2 cells. In the SOS/umuC assay 13 out of the 51 samples were genotoxic: two effluent samples from chemical industry; one sample of wastewater treatment plant effluent; two hospital wastewater samples; three river water samples and four lake water samples. Six samples were cytotoxic for HepG2 cells: both effluent samples of chemical industry, two wastewater treatment plant effluent samples, and two river water samples, however, only the chemical industry effluent samples were genotoxic and cytotoxic, indicating that different contaminants are responsible for genotoxic and toxic effects. Comparing genotoxicity of river and lake water samples with the chemical analytical data of the presence of the residues of pharmaceutical and personal care products (non-steroidal anti-inflammatory drugs, UV filters and disinfectants) in these samples, indicated that the presence of UV filters might be linked to the genotoxicity of these samples. The results showed that the application of the bacterial SOS/umuC assay and mammalian cell assays (MTT and comet assay) with HepG2 cells was suitably sensitive combination of assays to monitor genotoxicity and cytotoxicity of native samples of wastewaters and surface waters. With this study we also confirmed that the toxicity/genotoxicity bioassays should be an integral tool in the evaluation of toxicity of complex wastewaters before the release into environment, as well as for the monitoring of surface water quality, providing data useful in risk assessment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号