首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
基础理论   3篇
  2018年   1篇
  2014年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Among primates, group size is highly variable. The standard ecological model assumes that better predation avoidance as group size increases favours living in larger groups, whereas increased travel costs and reduced net food intake due to within-group competition for resources set the upper limit. Folivorous primates, however, tend to defy this generalisation in that some live in small groups despite low costs of feeding competition. To resolve this ’folivore paradox’, it has been suggested that folivore group size is limited by social factors such as male harassment or infanticide, or that females can disperse more easily and thus maintain group size near optimum levels. In this paper, we examine the effects of group size on home range size, day-journey length, activity budget and diet in wild Thomas’s langurs (Presbytis thomasi), which live in one-male multi-female groups with a limited life cycle. We examined only data from the stable middle tenure phase when factors such as the strength of the breeding male or the way in which groups were formed did not influence ranging and activities. During this phase, group size affected day-journey length and home range size, and had a minor effect on diet, but did not influence time spent feeding or resting, allogrooming or birth rates. Hence the upper limit to group size during the middle tenure phase in Thomas’s langurs is not set by feeding competition. The folivore paradox is not due to frequent female dispersal in Thomas’s langurs. The timing of female dispersal is not as expected if it serves to keep group sizes near the ecological optimum, and groups seem to be below this optimum. Instead, female reproductive success is presumably maximised in small to mid-sized groups because larger groups show a clear trend to experience higher risk of take-over, often accompanied by infanticide. Because females can redistribute themselves among nearby groups when groups reorganise each time a new male starts up a new group, females can keep the group small. Thus, a social factor, risk of infanticide, seems to provide the selective advantage to small group size in Thomas’s langurs. Received: 29 July 1999 / Revised: 17 November 1999 / Accepted: 15 October 2000  相似文献   
2.
Habitat fragmentation affects species distribution and abundance, and drives extinctions. Escalated tropical deforestation and fragmentation have confined many species populations to habitat remnants. How worthwhile is it to invest scarce resources in conserving habitat remnants within densely settled production landscapes? Are these fragments fated to lose species anyway? If not, do other ecological, anthropogenic, and species‐related factors mitigate the effect of fragmentation and offer conservation opportunities? We evaluated, using generalized linear models in an information‐theoretic framework, the effect of local‐ and landscape‐scale factors on the richness, abundance, distribution, and local extinction of 6 primate species in 42 lowland tropical rainforest fragments of the Upper Brahmaputra Valley, northeastern India. On average, the forest fragments lost at least one species in the last 30 years but retained half their original species complement. Species richness declined as proportion of habitat lost increased but was not significantly affected by fragment size and isolation. The occurrence of western hoolock gibbon (Hoolock hoolock) and capped langur (Trachypithecus pileatus) in fragments was inversely related to their isolation and loss of habitat, respectively. Fragment area determined stump‐tailed (Macaca arctoides) and northern pig‐tailed macaque occurrence (Macaca leonina). Assamese macaque (Macaca assamensis) distribution was affected negatively by illegal tree felling, and rhesus macaque (Macaca mulatta) abundance increased as habitat heterogeneity increased. Primate extinction in a fragment was primarily governed by the extent of divergence in its food tree species richness from that in contiguous forests. We suggest the conservation value of these fragments is high because collectively they retained the entire original species pool and individually retained half of it, even a century after fragmentation. Given the extensive habitat and species loss, however, these fragments urgently require protection and active ecological restoration to sustain this rich primate assemblage. Correlaciones Locales y de Paisaje de la Distribución y Persistencia de Primates en los Bosques Lluviosos Remanentes en el Valle del Alto Brahmaputra, Noreste de India  相似文献   
3.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号