首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   2篇
综合类   4篇
基础理论   1篇
污染及防治   1篇
  2018年   1篇
  2013年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Enrichment culturing of sludge taken from an industrial wastewater treatment pond led to the identification of a bacterium (Klebsiella jilinsis H. Zhang) that degrades chlorimuron-ethyl with high efficiency. Klebsiella jilinsis strain 2N3 grows with chlorimuron-ethyl as the sole nitrogen source at the optimal temperature range of 30–35°C and pH values between 6.0–7.0. In liquid medium, the degradation activity was further induced by chlorimuron-ethyl. Degradation rates followed the pesticide degradation kinetic equation at concentrations between 20 and 200 mg L?1. Using initial concentrations of 20 and 100 mg L?1, the degradation rates of chlorimuron-ethyl were 83.5 % and 92.5 % in 12 hours, respectively. At an initial concentration higher than 200 mg L?1, the degradation rate decreased slightly as the concentration increased. The 2N3 strain also degraded the sulfonylurea herbicides ethametsulfuron, metsulfuron-methyl, nicosulfuron, rimsulfuron, and tribenuron-methyl. This study provides scientific evidence and support for the application of K. jilinsis in bioremediation to reduce environmental pollution.  相似文献   
2.
汞和两种农药复合污染对土壤转化酶活性的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
通过模拟方法研究了豆磺隆,呋喃丹2种农药与重金属汞(Hg)单一及复合污染对草甸棕壤和黑土4个土壤转化酶活性的影响.结果显示,在试验浓度范围内,土壤添加豆磺隆和呋喃丹后,转化酶变化幅度分别为-12%~7%和-6%~7%,表明2种农药对土壤转化酶的毒性较小;Hg对转化酶最大抑制率为22%~35%,二者之间呈显著的对数负相关关系,表明Hg对转化酶的毒性较大,转化酶在一定程度上可作为Hg污染的监测指标,通过对数方程计算出4个土样的生态剂量(ED50)分别为76.68,727.49,236.52,316.59mg/kg;Hg和2种农药之间普遍存在交互作用,豆磺隆与Hg复合污染引起土壤转化酶最大净变化量(△I)为对照的-12%~15%,呋喃丹和Hg为-25%~-6%,有机质对复合污染产生的毒性有明显的缓冲作用.  相似文献   
3.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   
4.
氯嘧磺隆降解菌的筛选及对污染土壤的生物修复   总被引:1,自引:0,他引:1  
采用富集培养方法从江苏某激素研究所污水处理池排污口污泥中分离得到1株氯嘧磺隆降解菌,经菌株形态学特征和26S rDNA序列分析,鉴定为胶红酵母菌(Rhodotorula mucilaginosa ).经降解条件优化,菌株对含100mg/L氯嘧磺隆的无机盐培养基中氯嘧磺隆的最佳降解条件为:接种量2.5%,培养温度28℃,pH 6.0,培养5d后降解率为87.33%;在氯嘧磺隆初始浓度为10mg/kg(干土)的模拟污染土壤中,菌株最佳降解条件为:接种量2.5%,温度25℃,pH 6.0,土壤含水量30%,静息培养30d后降解率为90.74%.土壤修复实验结果表明,施加胶红酵母菌后减轻了氯嘧磺隆对小麦幼苗的药害,在氯嘧磺隆浓度为10mg/kg的土壤中投加降解菌后,小麦的出苗率、株高、根长及鲜重均明显高于未投加降解菌的对照组(P < 0.05).  相似文献   
5.
A yeast strain which was capable of degrading sulfonylurea herbicide chlorimuron-ethyl named as LF1 was isolated from a chlorimuron-ethyl contaminated soil near the warehouse of the factory producing chlorimuron-ethyl in Shenyang City, Northeast China. The strain was identified as Sporobolomyces sp., based on its morphological and physiological characteristics and the phylogenetic analysis of 18S rRNA gene sequence. So far, this is the only yeast strain of Sporobolomyces sp. which is able to degrade chlorimuronethyl. Incubation tests showed that when the initial concentration of chlorimuron-ethyl in culture was 5 mg/L, LF1 could degrade more than 77% of the herbicide after incubation for 4 d at 30°C. The possible mechanism of chlorimuron-ethyl degradation by LF1 could be the acidic hydrolysis caused by the acids from the metabolism of the yeast strain. Further study should be conducted to examine the pathways of chlorimuron-ethyl degradation by LF1 and to approach the feasibility of using LF1 to degrade the chlorimuron-ethyl in soil system.  相似文献   
6.
Chlorimuron-ethyl, a post-emergent herbicide selectively used in soybean and maize, degrades mainly through chemical hydrolysis. Photolysis has also an important role in the degradation of this compound. Phototransformation of chlorimuron-ethyl takes place through the cleavage of the sulfonylurea bridge, dechlorination, de-esterification and cyclization. Enzymatic de-esterification usually takes place in plant system to liberate the free acid, chlorimuron, which, in fact, inhibits the acetolactate synthase enzyme. In the non-enzymatic environment, de-esterification generally does not occur at normal pH and in moisture-free medium. But on the leaf surface of maize crop de-esterification of chlorimuron-ethyl takes place. The moisture deposited on leaf surfaces by virtue of evapo-transpirational loss of water may cause the de-esterification of chlorimuron-ethyl to the free acid, chlorimuron.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号