首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   19篇
基础理论   59篇
  2023年   7篇
  2022年   5篇
  2021年   8篇
  2020年   8篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Conservation conflicts are gaining importance in contemporary conservation scholarship such that conservation may have entered a conflict hype. We attempted to uncover and deconstruct the normative assumptions behind such studies by raising several questions: what are conservation conflicts, what justifies the attention they receive, do conservation-conflict studies limit wildlife conservation, is scientific knowledge stacked against wildlife in conservation conflicts, do conservation-conflict studies adopt a specific view of democracy, can laws be used to force conservation outcomes, why is flexibility needed in managing conservation conflicts, can conservation conflicts be managed by promoting tolerance, and who needs to compromise in conservation conflicts? We suggest that many of the intellectual premises in the field may defang conservation and prevent it from truly addressing the current conservation crisis as it accelerates. By framing conservation conflicts as conflicts between people about wildlife or nature, the field insidiously transfers guilt, whereby human activities are no longer blamed for causing species decline and extinctions but conservation is instead blamed for causing social conflicts. When the focus is on mitigating social conflicts without limiting in any powerful way human activities damaging to nature, conservation-conflict studies risk keeping conservation within the limits of human activities, instead of keeping human activities within the limits of nature. For conservation to successfully stop the biodiversity crisis, we suggest the alternative goal of recognizing nature's right to existence to maintenance of ecological functions and evolutionary processes. Nature being a rights bearer or legal person would imply its needs must be explicitly taken into account in conflict adjudication. If, even in conservation, nature's interests come second to human interests, it may be no surprise that conservation cannot succeed.  相似文献   
2.
Unsustainable wildlife trade affects biodiversity and the livelihoods of communities dependent upon those resources. Wildlife farming has been proposed to promote sustainable trade, but characterizing markets and understanding consumer behavior remain neglected but essential steps in the design and evaluation of such operations. We used sea turtle trade in the Cayman Islands, where turtles have been farm raised for human consumption for almost 50 years, as a case study to explore consumer preferences toward wild‐sourced (illegal) and farmed (legal) products and potential conservation implications. Combining methods innovatively (including indirect questioning and choice experiments), we conducted a nationwide trade assessment through in‐person interviews from September to December 2014. Households were randomly selected using disproportionate stratified sampling, and responses were weighted based on district population size. We approached 597 individuals, of which 37 (6.2%) refused to participate. Although 30% of households had consumed turtle in the previous 12 months, the purchase and consumption of wild products was rare (e.g., 64–742 resident households consumed wild turtle meat [i.e., 0.3–3.5% of households] but represented a large threat to wild turtles in the area due to their reduced populations). Differences among groups of consumers were marked, as identified through choice experiments, and price and source of product played important roles in their decisions. Despite the long‐term practice of farming turtles, 13.5% of consumers showed a strong preference for wild products, which demonstrates the limitations of wildlife farming as a single tool for sustainable wildlife trade. By using a combination of indirect questioning, choice experiments, and sales data to investigate demand for wildlife products, we obtained insights about consumer behavior that can be used to develop conservation‐demand‐focused initiatives. Lack of data from long‐term social–ecological assessments hinders the evaluation of and learning from wildlife farming. This information is key to understanding under which conditions different interventions (e.g., bans, wildlife farming, social marketing) are likely to succeed.  相似文献   
3.
Environmental heterogeneity is increasingly being used to select conservation areas that will provide for future biodiversity under a variety of climate scenarios. This approach, termed conserving nature's stage (CNS), assumes environmental features respond to climate change more slowly than biological communities, but will CNS be effective if the stage were to change as rapidly as the climate? We tested the effectiveness of using CNS to select sites in salt marshes for conservation in coastal Georgia (U.S.A.), where environmental features will change rapidly as sea level rises. We calculated species diversity based on distributions of 7 bird species with a variety of niches in Georgia salt marshes. Environmental heterogeneity was assessed across six landscape gradients (e.g., elevation, salinity, and patch area). We used 2 approaches to select sites with high environmental heterogeneity: site complementarity (environmental diversity [ED]) and local environmental heterogeneity (environmental richness [ER]). Sites selected based on ER predicted present‐day species diversity better than randomly selected sites (up to an 8.1% improvement), were resilient to areal loss from SLR (1.0% average areal loss by 2050 compared with 0.9% loss of randomly selected sites), and provided habitat to a threatened species (0.63 average occupancy compared with 0.6 average occupancy of randomly selected sites). Sites selected based on ED predicted species diversity no better or worse than random and were not resilient to SLR (2.9% average areal loss by 2050). Despite the discrepancy between the 2 approaches, CNS is a viable strategy for conservation site selection in salt marshes because the ER approach was successful. It has potential for application in other coastal areas where SLR will affect environmental features, but its performance may depend on the magnitude of geological changes caused by SLR. Our results indicate that conservation planners that had heretofore excluded low‐lying coasts from CNS planning could include coastal ecosystems in regional conservation strategies.  相似文献   
4.
A vibrant debate about the future direction of biodiversity conservation centers on the merits of the so‐called new conservation. Proponents of the new conservation advocate a series of positions on key conservation ideas, such as the importance of human‐dominated landscapes and conservation's engagement with capitalism. These have been fiercely contested in a debate dominated by a few high‐profile individuals, and so far there has been no empirical exploration of existing perspectives on these issues among a wider community of conservationists. We used Q methodology to examine empirically perspectives on the new conservation held by attendees at the 2015 International Congress for Conservation Biology (ICCB). Although we identified a consensus on several key issues, 3 distinct positions emerged: in favor of conservation to benefit people but opposed to links with capitalism and corporations, in favor of biocentric approaches but with less emphasis on wilderness protection than prominent opponents of new conservation, and in favor of the published new conservation perspective but with less emphasis on increasing human well‐being as a goal of conservation. Our results revealed differences between the debate on the new conservation in the literature and views held within a wider, but still limited, conservation community and demonstrated the existence of at least one viewpoint (in favor of conservation to benefit people but opposed to links with capitalism and corporations) that is almost absent from the published debate. We hope the fuller understanding we present of the variety of views that exist but have not yet been heard, will improve the quality and tone of debates on the subject.  相似文献   
5.
Urban ecology is emerging as an integrative science that explores the interactions of people and biodiversity in cities. Interdisciplinary research requires the creation of new tools that allow the investigation of relations between people and biodiversity. It has been established that access to green spaces or nature benefits city dwellers, but the role of species diversity in providing psychological benefits remains poorly studied. We developed a user‐friendly 3‐dimensional computer program (Virtual Garden [ www.tinyurl.com/3DVirtualGarden ]) that allows people to design their own public or private green spaces with 95 biotic and abiotic features. Virtual Garden allows researchers to explore what elements of biodiversity people would like to have in their nearby green spaces while accounting for other functions that people value in urban green spaces. In 2011, 732 participants used our Virtual Garden program to design their ideal small public garden. On average gardens contained 5 different animals, 8 flowers, and 5 woody plant species. Although the mathematical distribution of flower and woody plant richness (i.e., number of species per garden) appeared to be similar to what would be expected by random selection of features, 30% of participants did not place any animal species in their gardens. Among those who placed animals in their gardens, 94% selected colorful species (e.g., ladybug [Coccinella septempunctata], Great Tit [Parus major], and goldfish), 53% selected herptiles or large mammals, and 67% selected non‐native species. Older participants with a higher level of education and participants with a greater concern for nature designed gardens with relatively higher species richness and more native species. If cities are to be planned for the mutual benefit of people and biodiversity and to provide people meaningful experiences with urban nature, it is important to investigate people's relations with biodiversity further. Virtual Garden offers a standardized tool with which to explore these relations in different environments, cultures, and countries. It can also be used by stakeholders (e.g., city planners) to consider people's opinions of local design. Programa de Computadora de Jardín Virtual para Uso en la Exploración de los Elementos de Biodiversidad que la Gente Desea en las Ciudades  相似文献   
6.
Understanding threatened species diversity is important for long‐term conservation planning. Geodiversity—the diversity of Earth surface materials, forms, and processes—may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species’ diversity and distribution pattern is a logical next step for conservation. We used 4 geodiversity variables (rock‐type and soil‐type richness, geomorphological diversity, and hydrological feature diversity) and 4 climatic and topographic variables to model threatened species diversity across 31 of Finland's national parks. We also analyzed rarity‐weighted richness (a measure of site complementarity) of threatened vascular plants, fungi, bryophytes, and all species combined. Our 1‐km2 resolution data set included 271 threatened species from 16 major taxa. We modeled threatened species richness (raw and rarity weighted) with boosted regression trees. Climatic variables, especially the annual temperature sum above 5 °C, dominated our models, which is consistent with the critical role of temperature in this boreal environment. Geodiversity added significant explanatory power. High geodiversity values were consistently associated with high threatened species richness across taxa. The combined effect of geodiversity variables was even more pronounced in the rarity‐weighted richness analyses (except for fungi) than in those for species richness. Geodiversity measures correlated most strongly with species richness (raw and rarity weighted) of threatened vascular plants and bryophytes and were weakest for molluscs, lichens, and mammals. Although simple measures of topography improve biodiversity modeling, our results suggest that geodiversity data relating to geology, landforms, and hydrology are also worth including. This reinforces recent arguments that conserving nature's stage is an important principle in conservation.  相似文献   
7.
Marine protected areas (MPAs) are a critical defense against biodiversity loss in the world's oceans, but to realize near-term conservation benefits, they must be established where major threats to biodiversity occur and can be mitigated. We quantified the degree to which MPA establishment has targeted stoppable threats (i.e., threats that can be abated through effectively managed MPAs alone) by combining spatially explicit marine biodiversity threat data in 2008 and 2013 and information on the location and potential of MPAs to halt threats. We calculated an impact metric to determine whether countries are protecting proportionally more high- or low-threat ecoregions and compared observed values with random protected-area allocation. We found that protection covered <2% of ecoregions in national waters with high levels of abatable threat in 2013, which is ∼59% less protection in high-threat areas than if MPAs had been placed randomly. Relatively low-threat ecoregions had 6.3 times more strict protection (International Union for Conservation of Nature categories I–II) than high-threat ecoregions. Thirty-one ecoregions had high levels of stoppable threat but very low protection, which presents opportunities for MPAs to yield more significant near-term conservation benefits. The extent of the global MPA estate has increased, but the establishment of MPAs where they can reduce threats that are driving biodiversity loss is now urgently needed.  相似文献   
8.
Because conservation planners typically lack data on where species occur, environmental surrogates—including geophysical settings and climate types—have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within‐site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species’ environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change.  相似文献   
9.
The Global Strategy for Plant Conservation (GSPC) set an ambitious target to achieve a conservation assessment for all known plant species by 2020. We consolidated digitally available plant conservation assessments and reconciled their scientific names and assessment status to predefined standards to provide a quantitative measure of progress toward this target. The 241,919 plant conservation assessments generated represent 111,824 accepted land plant species (vascular plants and bryophytes, not algae). At least 73,081 and up to 90,321 species have been assessed at the global scale, representing 21–26% of known plant species. Of these plant species, at least 27,148 and up to 32,542 are threatened. Eighty plant families, including some of the largest, such as Asteraceae, Orchidaceae, and Rubiaceae, are underassessed and should be the focus of assessment effort if the GSPC target is to be met by 2020. Our data set is accessible online (ThreatSearch) and is a baseline that can be used to directly support other GSPC targets and plant conservation action. Although around one‐quarter of a million plant assessments have been compiled, the majority of plants are still unassessed. The challenge now is to build on this progress and redouble efforts to document conservation status of unassessed plants to better inform conservation decisions and conserve the most threatened species.  相似文献   
10.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号