首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   7篇
基础理论   31篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Despite several decades of research on the effects of fragmentation and habitat change on biodiversity, there remain strong biases in the geographical regions and taxonomic species studied. The knowledge gaps resulting from these biases are of particular concern if the forests most threatened with modification are also those for which the effects of such change are most poorly understood. To quantify the nature and magnitude of such biases, we conducted a systematic review of the published literature on forest fragmentation in the tropics for the period 1980–2012. Studies included focused on any type of response of single species, communities, or assemblages of any taxonomic group to tropical forest fragmentation and on fragmentation‐related changes to forests. Of the 853 studies we found in the SCOPUS database, 64% were conducted in the Neotropics, 13% in Asia, 10% in the Afrotropics, and 5% in Australasia. Thus, although the Afrotropics is subject to the highest rates of deforestation globally, it was the most disproportionately poorly studied biome. Significant taxonomic biases were identified. Of the taxonomic groups considered, herpetofauna was the least studied in the tropics, particularly in Africa. Research examining patterns of species distribution was by far the most common type (72%), and work focused on ecological processes (28%) was rare in all biomes, but particularly in the Afrotropics and for fauna. We suggest research efforts be directed toward less‐studied biogeographic regions, particularly where the threat of forest fragmentation continues to be high. Increased research investment in the Afrotropics will be important to build knowledge of threats and inform responses in a region where almost no efforts to restore its fragmented landscapes have yet begun and forest protection is arguably most tenuous. Sesgos Biogeográficos y Taxonómicos en la Investigación de la Fragmentación de Bosques Tropicales  相似文献   
2.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   
3.
Payments to compensate landowners for carrying out costly land‐use measures that benefit endangered biodiversity have become an important policy instrument. When designing such payments, it is important to take into account that spatially connected habitats are more valuable for many species than isolated ones. One way to incentivize provision of connected habitats is to offer landowners an agglomeration bonus, that is, a bonus on top of payments they are receiving to conserve land if the land is spatially connected. Researchers have compared the cost‐effectiveness of the agglomeration bonus with 2 alternatives: an all‐or‐nothing, agglomeration payment, where landowners receive a payment only if the conserved land parcels have a certain level of spatial connectivity, and a spatially homogeneous payment, where landowners receive a payment for conserved land parcels irrespective of their location. Their results show the agglomeration bonus is rarely the most cost‐effective option, and when it is, it is only slightly better than one of the alternatives. This suggests that the agglomeration bonus should not be given priority as a policy design option. However, this finding is based on consideration of only 1 species. We examined whether the same applied to 2 species, one for which the homogeneous payment is best and the other for which the agglomeration payment is most cost‐effective. We modified a published conceptual model so that we were able to assess the cost‐effectiveness of payment schemes for 2 species and applied it to a grassland bird and a grassland butterfly in Germany that require the same habitat but have different spatial‐connectivity needs. When conserving both species, the agglomeration bonus was more cost‐effective than the agglomeration and the homogeneous payment; thus, we showed that as a policy the agglomeration bonus is a useful conservation‐payment option.  相似文献   
4.
The objectives of conservation science and dissemination of its research create a paradox: Conservation is about preserving the environment, yet scientists spread this message at conferences with heavy carbon footprints. Ecology and conservation science depend on global knowledge exchange—getting the best science to the places it is most needed. However, conference attendance from developed countries typically outweighs that from developing countries that are biodiversity and conservation hotspots. If any branch of science should be trying to maximize participation while minimizing carbon emissions, it is conservation. Virtual conferencing is common in other disciplines, such as education and humanities, but it is surprisingly underused in ecology and conservation. Adopting virtual conferencing entails a number of challenges, including logistics and unified acceptance, which we argue can be overcome through planning and technology. We examined 4 conference models: a pure‐virtual model and 3 hybrid hub‐and‐node models, where hubs stream content to local nodes. These models collectively aim to mitigate the logistical and administrative challenges of global knowledge transfer. Embracing virtual conferencing addresses 2 essential prerequisites of modern conferences: lowering carbon emissions and increasing accessibility for remote, time‐ and resource‐poor researchers, particularly those from developing countries.  相似文献   
5.
Abstract: The conflict between economic growth and biodiversity conservation is understood in portions of academia and sometimes acknowledged in political circles. Nevertheless, there is not a unified response. In political and policy circles, the environmental Kuznets curve (EKC) is posited to solve the conflict between economic growth and environmental protection. In academia, however, the EKC has been deemed fallacious in macroeconomic scenarios and largely irrelevant to biodiversity. A more compelling response to the conflict is that it may be resolved with technological progress. Herein I review the conflict between economic growth and biodiversity conservation in the absence of technological progress, explore the prospects for technological progress to reconcile that conflict, and provide linguistic suggestions for describing the relationships among economic growth, technological progress, and biodiversity conservation. The conflict between economic growth and biodiversity conservation is based on the first two laws of thermodynamics and principles of ecology such as trophic levels and competitive exclusion. In this biophysical context, the human economy grows at the competitive exclusion of nonhuman species in the aggregate. Reconciling the conflict via technological progress has not occurred and is infeasible because of the tight linkage between technological progress and economic growth at current levels of technology. Surplus production in existing economic sectors is required for conducting the research and development necessary for bringing new technologies to market. Technological regimes also reflect macroeconomic goals, and if the goal is economic growth, reconciliatory technologies are less likely to be developed. As the economy grows, the loss of biodiversity may be partly mitigated with end‐use innovation that increases technical efficiency, but this type of technological progress requires policies that are unlikely if the conflict between economic growth and biodiversity conservation (and other aspects of environmental protection) is not acknowledged.  相似文献   
6.
Monitoring free‐ranging animals in their natural habitat is a keystone of ecosystem conservation and increasingly important in the context of current rates of loss of biological diversity. Data collected from individuals of endangered species inform conservation policies. Conservation professionals assume that these data are reliable—that the animals from whom data are collected are representative of the species in their physiology, ecology, and behavior and of the populations from which they are drawn. In the last few decades, there has been an enthusiastic adoption of invasive techniques for gathering ecological and conservation data. Although these can provide impressive quantities of data, and apparent insights into animal ranges and distributions, there is increasing evidence that these techniques can result in animal welfare problems, through the wide‐ranging physiological effects of acute and chronic stress and through direct or indirect injuries or compromised movement. Much less commonly, however, do conservation scientists consider the issue of how these effects may alter the behavior of individuals to the extent that the data they collect could be unreliable. The emerging literature on the immediate and longer‐term effects of capture and handling indicate it can no longer be assumed that a wild animal's survival of the process implies the safety of the procedure, that the procedure is ethical, or the scientific validity of the resulting data. I argue that conservation professionals should routinely assess study populations for negative effects of their monitoring techniques and adopt noninvasive approaches for best outcomes not only for the animals, but also for conservation science. Efecto de la Técnica de Monitoreo en la Calidad de la Ciencia de la Conservación  相似文献   
7.
Community-level resource management efforts are cornerstones in ensuring sustainable use of natural resources. Yet, understanding how community characteristics influence management practices remains contested. With a sample size of ≥725 communities, we assessed the effects of key community (i.e., socioeconomic) characteristics (human population size and density, market integration, and modernization) on the probability of occurrence of fisheries management practices, including gear, species, and spatial restrictions. The study was based in Solomon Islands, a Pacific Island country with a population that is highly dependent on coastal fisheries. People primarily dwell in small communities adjacent to the coastline dispersed across 6 island provinces and numerous smaller islands. We used nationally collected data in binomial logistic regression models to examine the likelihood of management occurrence, given socioeconomic context of communities. In contrast to prevailing views, we identified a positive and statistically significant association between both human population size and market integration and all 3 management practices. Human population density, however, had a statistically significant negative association and modernization a varied and limited association with occurrence of all management practices. Our method offers a way to remotely predict the occurrence of resource management practices based on key socioeconomic characteristics. It could be used to improve understanding of why some communities conduct natural resource management activities when statistical patterns suggest they are not likely to and thus improve understanding of how some communities of people beat the odds despite limited market access and high population density.  相似文献   
8.
Despite much discussion about the utility of remote sensing for effective conservation, the inclusion of these technologies in species recovery plans remains largely anecdotal. We developed a modeling approach for the integration of local, spatially measured ecosystem functional dynamics into a species distribution modeling (SDM) framework in which other ecologically relevant factors are modeled separately at broad scales. To illustrate the approach, we incorporated intraseasonal water-vegetation dynamics into a cross-scale SDM for the Common Snipe (Gallinago gallinago), which is highly dependent on water and vegetation dynamics. The Common Snipe is an Iberian grassland waterbird characteristic of European agricultural meadows and a member of one of the most threatened bird guilds. The intraseasonal dynamics of water content of vegetation were measured using the standard deviation of the normalized difference water index time series computed from bimonthly images of the Sentinel-2 satellite. The recovery plan for the Common Snipe in Galicia (northwestern Iberian Peninsula) provided an opportunity to apply our modeling framework. Model accuracy in predicting the species’ distribution at a regional scale (resulting from integration of downscaled climate projections with regional habitat–topographic suitability models) was very high (area under the curve [AUC] of 0.981 and Boyce's index of 0.971). Local water-vegetation dynamic models, based exclusively on Sentinel-2 imagery, were good predictors (AUC of 0.849 and Boyce's index of 0.976). The predictive power improved (AUC of 0.92 and Boyce's index of 0.98) when local model predictions were restricted to areas identified by the continental and regional models as priorities for conservation. Our models also performed well (AUC of 0.90 and Boyce's index of 0.93) when projected to updated water-vegetation conditions. Our modeling framework enabled incorporation of key ecosystem processes closely related to water and carbon cycles while accounting for other factors ecologically relevant to endangered grassland waterbirds across different scales, allowed identification of priority areas for conservation, and provided an opportunity for cost-effective recovery planning by monitoring management effectiveness from space.  相似文献   
9.
Abstract: In a preliminary analysis of listing decisions under Canada's Species at Risk Act (SARA), Mooers et al. (2007) demonstrated an apparent bias against marine and northern species. As a follow‐up, we expanded the set of potential explanatory variables, including information on jurisdictional and administrative elements of the listing process, and considered an additional 16 species recommended for listing by SARA's scientific advisory committee as of 15 August 2006. Logistic model selection based on Akaike differences suggested that species were less likely to be listed if they were harvested or had commercial or subsistence harvesting as an explicitly identified threat; had Department of Fisheries and Oceans (DFO) as a responsible authority (RA); were located in Canada's north generally, and especially in Nunavut; or were found mostly or entirely within Canada. Subsequent model validation with an independent set of 50 species for which a listing decision was handed down in December 2007 showed an overall misclassification rate of <0.10, indicating reasonable predictive power. In light of these results, we recommend that RAs under SARA adopt a two‐track listing approach to address problems of delays arising from extended consultations and the inconsistent use by the RAs of socioeconomic analysis; consider revising SARA so that socioeconomic analysis occurs during decisions about protecting species and their habitats rather than at the listing stage; and maintain an integrated database with information on species’ biology, threats, and agency actions to enable future evaluation of SARA's impact.  相似文献   
10.
Abstract: Economic growth‐the increase in production and consumption of goods and services‐must be considered within its biophysical context. Economic growth is fueled by biophysical inputs and its outputs degrade ecological processes, such as the global climate system. Economic growth is currently the principal cause of increased climate change, and climate change is a primary mechanism of biodiversity loss. Therefore, economic growth is a prime catalyst of biodiversity loss. Because people desire economic growth for dissimilar reasons‐some for the increased accumulation of wealth, others for basic needs‐how we limit economic growth becomes an ethical problem. Principles of distributive justice can help construct an international climate‐change regime based on principles of equity. An equity‐based framework that caps economic growth in the most polluting economies will lessen human impact on biodiversity. When coupled with a cap‐and‐trade mechanism, the framework can also provide a powerful tool for redistribution of wealth. Such an equity‐based framework promises to be more inclusive and therefore more effective because it accounts for the disparate developmental conditions of the global north and south.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号