首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
基础理论   35篇
评价与监测   1篇
  2020年   2篇
  2018年   2篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1998年   3篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
排序方式: 共有36条查询结果,搜索用时 62 毫秒
1.
Late Quaternary extinctions and population fragmentations have severely disrupted animal‐plant interactions globally. Detection of disrupted interactions often relies on anachronistic plant characteristics, such as spines in the absence of large herbivores or large fruit without dispersers. However, obvious anachronisms are relatively uncommon, and it can be difficult to prove a direct link between the anachronism and a particular faunal taxon. Analysis of coprolites (fossil feces) provides a novel way of exposing lost interactions between animals (depositors) and consumed organisms. We analyzed ancient DNA to show that a coprolite from the South Island of New Zealand was deposited by the rare and threatened kakapo (Strigops habroptilus), a large, nocturnal, flightless parrot. When we analyzed the pollen and spore content of the coprolite, we found pollen from the cryptic root‐parasite Dactylanthus taylorii. The relatively high abundance (8.9% of total pollen and spores) of this zoophilous pollen type in the coprolite supports the hypothesis of a former direct feeding interaction between kakapo and D. taylorii. The ranges of both species have contracted substantially since human settlement, and their present distributions no longer overlap. Currently, the lesser short‐tailed bat (Mystacina tuberculata) is the only known native pollinator of D. taylorii, but our finding raises the possibility that birds, and other small fauna, could have once fed on and pollinated the plant. If confirmed, through experimental work and observations, this finding may inform conservation of the plant. For example, it may be possible to translocate D. taylorii to predator‐free offshore islands that lack bats but have thriving populations of endemic nectar‐feeding birds. The study of coprolites of rare or extinct taxonomic groups provides a unique way forward to expand existing knowledge of lost plant and animal interactions and to identify pollination and dispersal syndromes. This approach of linking paleobiology with neoecology offers significant untapped potential to help inform conservation and restoration plans. Un Eslabón Perdido entre un Loro No Volador y una Planta Parásita y el Papel Potencial de Coprolitos en Paleobiología de la Conservación  相似文献   
2.
Summary. Jasmonic acid (JA) is a wound-related hormone found in most plants that, when applied exogenously, can induce increases in levels of chemical defenses in patterns similar to those induced by mechanical damage or insect feeding. Relative to responses to insect and pathogen attack, chemical responses of herbaceous plants to mammalian herbivore attack have been little studied. In a field experiment, we compared the effects of JA treatment and naturally occurring mammalian herbivory on the expression of trypsin inhibitors, glucosinolates, peroxidase activity and growth of wild mustard (Brassica kaber). Exogenous JA significantly increased trypsin inhibitor activity and glucosinolate concentration, and moderately increased peroxidase activity in the eighth true leaves of five-week-old plants, relative to untreated controls. In contrast, levels of these chemical defenses in the eighth true leaves or in regrowth foliage of plants that had ∼80% of their leaf area removed by groundhogs (Marmota monax) did not differ from that in undamaged and untreated controls. Although exogenous JA significantly elevated levels of chemical defenses, it did not affect height of plants through the season and only slightly reduced time to first flower. Groundhog herbivory significantly reduced height and delayed or abolished flowering, but these effects were not substantial unless coupled with apical meristem removal. We hypothesize that the lack of effect of groundhog herbivory on chemical defenses may be due in part to the speed and pattern of leaf area removal by groundhogs, or physiological constraints caused by leaf area loss. Despite having no effect on chemical defense production, leaf area loss by groundhogs was more costly to growth and fitness than the effects of JA application in this study, but only substantially so if coupled with apical meristem removal. We suggest that in general, costs of defense production in plants are likely to be minimal when compared to the risk of losing large amounts of leaf area or primary meristematic tissue. Thus, if they are effective at deterring herbivory, the benefits of inducible defense production likely outweigh the costs in most cases. Received 20 December 2000; accepted 3 May 2001  相似文献   
3.
Abstract: The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long‐term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry‐forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks—livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb–shrub richness in the livestock‐free block, but had no effect on that of tree seedlings in either livestock block. Tree‐seedling and herb–shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana‐free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey‐dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long‐term protection of these forests as viable tiger habitats.  相似文献   
4.
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life‐form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. Efecto de la Expansión de Macroalgas y Áreas Marinas Protegidas sobre la Recuperación de Coral Después de una Perturbación Climática  相似文献   
5.
Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top‐down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large‐bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no‐take, and no‐entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no‐entry zones than in fished and no‐take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no‐entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top‐down forces may not play a strong role in regulating large‐bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. El Impacto de las Áreas de Conservación sobre las Interacciones Tróficas entre los Depredadores Dominantes y los Herbívoros en los Arrecifes de Coral  相似文献   
6.
Flowers exhibit great intra-specific variation in the rewards they offer. At any one time, a significant proportion of flowers often contain little or no reward. Hence, foraging profitably for floral rewards is problematic and any ability to discriminate between flowers and avoid those that are less rewarding will confer great advantages. In this study, we examine discrimination by foraging bees among flowers of nasturtium, Tropaeolum majus. Bee visitors included carpenter bees, Xylocopa violacea, which were primary nectar robbers; honeybees, Apis mellifera, which either acted as secondary nectar robbers or gathered pollen legitimately and bumblebees, Bombus hortorum, which were the only bees able to gather nectar legitimately. Many flowers were damaged by phytophagous insects. Nectar volume was markedly lower in flowers with damaged petals (which were also likely to be older) and in flowers that had nectar-robbing holes. We test whether bees exhibit selectivity with regards to the individual flowers, which they approach and enter, and whether this selectivity enhances foraging efficiency. The flowers approached (within 2 cm) by A. mellifera and B. hortorum were non-random when compared to the floral population; both species selectively approached un-blemished flowers. They both approached more yellow flowers than would be expected by chance, presumably a reflection of innate colour preferences, for nectar standing crop did not vary according to flower colour. Bees were also more likely to accept (land on) un-blemished flowers. A. mellifera gathering nectar exhibited selectivity with regards to the presence of robbing holes, being more likely to land on robbed flowers (they are not able to feed on un-robbed flowers). That they frequently approached un-robbed flowers suggests that they are not able to detect robbing holes at long-range, so that foraging efficiency may be limited by visual acuity. Nevertheless, by using a combination of long-range and short-range selectivity, nectar-gathering A. mellifera and B. hortorum greatly increased the average reward from the flowers on which they landed (by 68% and 48%, respectively) compared to the average standing crop in the flower population. Overall, our results demonstrate that bees use obvious floral cues (colour and petal blemishes) at long-range, but can switch to using more subtle cues (robbing holes) at close range. They also make many mistakes and some cues used do not correlate with floral rewards.  相似文献   
7.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   
8.
Abstract:  Species with known demographies may be used as proxies, or approximate models, to predict vital rates and ecological properties of target species that either have not been studied or are species for which data may be difficult to obtain. These extrapolations assume that model and target species with similar properties respond in the same ways to the same ecological factors, that they have similar population dynamics, and that the similarity of vital rates reflects analogous responses to the same factors. I used two rare, sympatric annual plants (sand gilia [ Gilia tenuiflora arenaria ] and Monterey spineflower [ Chorizanthe pungens pungens ]) to test these assumptions experimentally. The vital rates of these species are similar and strongly correlated with rainfall, and I added water and/or prevented herbivore access to experimental plots. Their survival and reproduction were driven by different, largely stochastic factors and processes: sand gilia by herbivory and Monterey spineflower by rainfall. Because the causal agents and processes generating similar demographic patterns were species specific, these results demonstrate, both theoretically and empirically, that it is critical to identify the ecological processes generating observed effects and that experimental manipulations are usually needed to determine causal mechanisms. Without such evidence to identify mechanisms, extrapolations among species may lead to counterproductive management and conservation practices.  相似文献   
9.
Summary Measurement of tropane alkaloid content in leaves ofAtropa acuminata after mechanical damage showed a maximum increase to 153% of the control 8 days later. There were no changes in the root or stem after similar damage. The plant responded to repeated mechanical damage by doubling its alkaloid content at 11 days after the initial wounding. But on further treatments, there was a slight decrease in alkaloid content with time. Mollusc feeding produced an increase of 164% in alkaloid content after 4 days. These results indicate that induced defence systems in angiosperms can vary considerably from plant species to plant species and that the effects of mechanical damage may differ in different parts of the same plant.  相似文献   
10.
Lysergol, elymoclavine and three other van Urk-positive alkaloids were identified by 2D chromatography in the seed extract ofIpomoea parasitica. The presence of the same ergoline alkaloids was also demonstrated in vegetative tissue ofI. parasitica. Heliothis virescens larvae reared on a diet containing an alkaloid extract ofI. parasitica showed an increase in the consumption index and a reduction in the effiency of conversion of food. No difference was observed in the approximated digestibility. The percentages of pupation and emergence were reduced and the malefemale ratio was altered in insects fed on a diet containing the alkaloid extract ofI. parasitica or lysergol. The increases in the concentration of ergoline alkaloids inI. parasitica at the seedling stage and at flowering support the theory that these compounds play a defensive role against herbivory in the plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号