首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   1篇
评价与监测   1篇
  2022年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Using Dynamic Modeling to Scope Environmental Problems and Build Consensus   总被引:22,自引:0,他引:22  
/ This paper assesses the changing role of dynamic modeling for understanding and managing complex ecological economic systems. It discusses new modeling tools for problem scoping and consensus building among a broad range of stakeholders and describes four case studies in which dynamic modeling has been used to collect and organize data, synthesize knowledge, and build consensus about the management of complex systems. The case studies range from industrial systems (mining, smelting, and refining of iron and steel in the United States) to ecosystems (Louisiana coastal wetlands, and Fynbos ecosystems in South Africa) to linked ecological economic systems (Maryland's Patuxent River basin in the United States). They illustrate uses of dynamic modeling to include stakeholders in all stages of consensus building, ranging from initial problem scoping to model development. The resultant models are the first stage in a three-stage modeling process that includes research and management models as the later stages.KEY WORDS: Dynamic modeling; Scoping; Consensus building; Environmental management; Ecosystem management; Policy making; Graphical programming languages  相似文献   
2.
This paper presents a new concept to include uncertainty management in energy and environmental planning models developed in algebraic modeling languages. SETSTOCH is a tool for linking algebraic modeling languages with specialized stochastic programming solvers. Its main role is to retrieve from the modeling language a dynamically ordered core model (baseline scenario) that is sent automatically to the stochastic solver. The case presented herein concerns such a study realized with the IEAMARKAL model used by many research teams around the world.  相似文献   
3.
English is widely recognized as the language of science, and English-language publications (ELPs) are rapidly increasing. It is often assumed that the number of non-ELPs is decreasing. This assumption contributes to the underuse of non-ELPs in conservation science, practice, and policy, especially at the international level. However, the number of conservation articles published in different languages is poorly documented. Using local and international search systems, we searched for scientific articles on biodiversity conservation published from 1980 to 2018 in English and 15 non-English languages. We compared the growth rate in publications across languages. In 12 of the 15 non-English languages, published conservation articles significantly increased every year over the past 39 years, at a rate similar to English-language articles. The other three languages showed contrasting results, depending on the search system. Since the 1990s, conservation science articles in most languages increased exponentially. The variation in the number of non-English-language articles identified among the search systems differed markedly (e.g., for simplified Chinese, 11,148 articles returned with local search system and 803 with Scopus). Google Scholar and local literature search systems returned the most articles for 11 and 4 non-English languages, respectively. However, the proportion of peer-reviewed conservation articles published in non-English languages was highest in Scopus, followed by Web of Science and local search systems, and lowest in Google Scholar. About 20% of the sampled non-English-language articles provided no title or abstract in English; thus, in theory, they were undiscoverable with English keywords. Possible reasons for this include language barriers and the need to disseminate research in countries where English is not widely spoken. Given the known biases in statistical methods and study characteristics between English- and non-English-language studies, non-English-language articles will continue to play an important role in improving the understanding of biodiversity and its conservation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号