首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
基础理论   3篇
  2016年   1篇
  2009年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Conservation planning is important to protect species from going extinct now that natural habitats are decreasing owing to human activity and climate change. However, there is considerable controversy in choosing appropriate metrics to weigh the value of species and geographic regions. For example, the added value of phylogenetic conservation‐selection criteria remains disputed because high correlations between them and the nonphylogenetic criteria of species richness have been reported. We evaluated the commonly used conservation metrics species richness, endemism, phylogenetic diversity (PD), and phylogenetic endemism (PE) in a case study on lemurs of Madagascar. This enabled us to identify the conservation target of each metric and consider how they may be used in future conservation planning. We also devised a novel metric that uses a phylogeny scaled according to the rate of phenotypic evolution as a proxy for a species’ ability to adapt to change. High rates of evolution may indicate generalization or specialization. Both specialization and low rates of evolution may result in an inability to adapt to changing environments. We examined conservation priorities by using the inverse of the rate of body mass evolution to account for species with low rates of evolution. In line with previous work, we found high correlations among species richness and PD (r = 0.96), and endemism and PE (r = 0.82) in Malagasy lemurs. Phylogenetic endemism in combination with rates of evolution and their inverse prioritized grid cells containing highly endemic and specialized lemurs at risk of extinction, such as Avahi occidentalis and Lepilemur edwardsi, 2 endangered lemurs with high rates of phenotypic evolution and low‐quality diets, and Hapalemur aureus, a critically endangered species with a low rate of body mass evolution and a diet consisting of very high doses of cyanide.  相似文献   
2.
Abstract:  Much research has focused on identifying traits that can act as useful indicators of how habitat loss affects the extinction risk of species, and the results are mixed. We developed 2 simple, rapid-assessment models of the susceptibility of species to habitat loss. We based both on an index of range size, but one also incorporated an index of body mass and the other an index combining habitat and dietary specialization. We applied the models to samples of birds (Accipitridae and Bucerotidae) and to the lemurs of Madagascar and compared the models' classifications of risk with the IUCN's global threat status of each species. The model derived from ecological attributes was much more robust than the one derived from body mass. Ecological attributes identified threatened birds and lemurs with an average of 80% accuracy and endangered and critically endangered species with 100% accuracy and identified some species not currently listed as threatened that almost certainly warrant conservation consideration. Appropriate analysis of even fairly crude biological information can help raise early-warning flags to the relative susceptibilities of species to habitat loss and thus provide a useful and rapid technique for highlighting potential species-level conservation issues. Advantages of this approach to classifying risk include flexibility in the specialization parameters used as well as its applicability at a range of spatial scales.  相似文献   
3.
Group histories and offspring sex ratios in ringtailed lemurs (Lemur catta)   总被引:2,自引:0,他引:2  
Birth sex ratios were examined for ringtailed lemurs (Lemur catta) at the Duke University Primate Center. This population provides a long-term database of births under a variety of demographic and management conditions, including two semi-freeranging groups between which males transfer freely and females defend stable territorial boundaries. We examined three hypotheses usually considered in studies of primate sex ratio bias. The Trivers-Willard hypothesis predicts that dominant females produce males, local resource competition at the population level (LRC-population) predicts that the dispersing sex (males) will be overproduced in dense populations, and local resource competition among individuals (LRC-individual) predicts that dominant females overproduce the philopatric sex (females). We also examined a fourth hypothesis, local resource enhancement (LRE), which is usually subsumed under LRC-individual in studies of primate sex ratio evolution. LRE predicts that under certain conditions, females will produce the sex that provides later cooperative benefits, such as alliance support for within- or between-group competition. Our data provide support for LRE: females overproduce daughters given prospects of new group formation, either through group fission or threatened expulsion of young mothers. Behavioral data from Duke and also wild populations show that daughters serve mothers as important allies in this context and LRE effects also have been documented in other mammals that experience similar group histories. Nonsignificant trends in the data supported the LRC-population hypothesis, and we suggest that LRC interacts with LRE to explain offspring sex ratios in ringtailed lemurs. Received: 27 August 1999 / Received in revised form: 6 March 2000 / Accepted: 18 March 2000  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号