首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   10篇
综合类   1篇
基础理论   31篇
污染及防治   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2001年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
对影响磨削辊面粗糙度的因素进行了系统分析和实验研究 ,得出了轧辊转速、砂轮速度、砂轮粒度、磨削液等因素对磨削辊面粗糙度影响的一般规律 ,利用回归分析的方法建立了粗糙度的数学模型  相似文献   
2.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   
3.
Electrocution on overhead power structures negatively affects avian populations in diverse ecosystems worldwide, contributes to the endangerment of raptor populations in Europe and Africa, and is a major driver of legal action against electric utilities in North America. We investigated factors associated with avian electrocutions so poles that are likely to electrocute a bird can be identified and retrofitted prior to causing avian mortality. We used historical data from southern California to identify patterns of avian electrocution by voltage, month, and year to identify species most often killed by electrocution in our study area and to develop a predictive model that compared poles where an avian electrocution was known to have occurred (electrocution poles) with poles where no known electrocution occurred (comparison poles). We chose variables that could be quantified by personnel with little training in ornithology or electric systems. Electrocutions were more common at distribution voltages (≤33 kV) and during breeding seasons and were more commonly reported after a retrofitting program began. Red‐tailed Hawks (Buteo jamaicensis) (n = 265) and American Crows (Corvus brachyrhynchos) (n = 258) were the most commonly electrocuted species. In the predictive model, 4 of 14 candidate variables were required to distinguish electrocution poles from comparison poles: number of jumpers (short wires connecting energized equipment), number of primary conductors, presence of grounding, and presence of unforested unpaved areas as the dominant nearby land cover. When tested against a sample of poles not used to build the model, our model distributed poles relatively normally across electrocution‐risk values and identified the average risk as higher for electrocution poles relative to comparison poles. Our model can be used to reduce avian electrocutions through proactive identification and targeting of high‐risk poles for retrofitting. Modelo Predictivo del Riesgo de Electrocución de Aves en Líneas Eléctricas Elevadas  相似文献   
4.
Although wildlife conservation actions have increased globally in number and complexity, the lack of scalable, cost‐effective monitoring methods limits adaptive management and the evaluation of conservation efficacy. Automated sensors and computer‐aided analyses provide a scalable and increasingly cost‐effective tool for conservation monitoring. A key assumption of automated acoustic monitoring of birds is that measures of acoustic activity at colony sites are correlated with the relative abundance of nesting birds. We tested this assumption for nesting Forster's terns (Sterna forsteri) in San Francisco Bay for 2 breeding seasons. Sensors recorded ambient sound at 7 colonies that had 15–111 nests in 2009 and 2010. Colonies were spaced at least 250 m apart and ranged from 36 to 2,571 m2. We used spectrogram cross‐correlation to automate the detection of tern calls from recordings. We calculated mean seasonal call rate and compared it with mean active nest count at each colony. Acoustic activity explained 71% of the variation in nest abundance between breeding sites and 88% of the change in colony size between years. These results validate a primary assumption of acoustic indices; that is, for terns, acoustic activity is correlated to relative abundance, a fundamental step toward designing rigorous and scalable acoustic monitoring programs to measure the effectiveness of conservation actions for colonial birds and other acoustically active wildlife. La Actividad Vocal como un Índice Escalable y de Bajo Costo del Tamaño de Colonia de las Aves Marinas  相似文献   
5.
Small body size is generally correlated with r‐selected life‐history traits, including early maturation, short‐generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small‐bodied freshwater fishes from 4 temperate river basins: Murray‐Darling, Australia; Danube, Europe; Mississippi‐Missouri, North America; and the Rio Grande, North America. Twenty‐three ecological and life‐history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed‐effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size—among small‐bodied species—was the most influential trait correlated with threatened species listings. The k‐folds cross‐validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small‐bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11,000 unclassified freshwater fishes, especially those under threat from proposed dam construction in the world's most biodiverse river basins.  相似文献   
6.
Protected areas are a cornerstone for forest protection, but they are not always effective during times of socioeconomic and institutional crises. The Carpathian Mountains in Eastern Europe are an ecologically outstanding region, with widespread seminatural and old‐growth forest. Since 1990, Carpathian countries (Czech Republic, Hungary, Poland, Romania, Slovakia, and Ukraine) have experienced economic hardship and institutional changes, including the breakdown of socialism, European Union accession, and a rapid expansion of protected areas. The question is how protected‐area effectiveness has varied during these times across the Carpathians given these changes. We analyzed a satellite‐based data set of forest disturbance (i.e., forest loss due to harvesting or natural disturbances) from 1985 to 2010 and used matching statistics and a fixed‐effects estimator to quantify the effect of protection on forest disturbance. Protected areas in the Czech Republic, Slovakia, and the Ukraine had significantly less deforestation inside protected areas than outside in some periods; the likelihood of disturbance was reduced by 1–5%. The effectiveness of protection increased over time in these countries, whereas the opposite was true in Romania. Older protected areas were most effective in Romania and Hungary, but newer protected areas were more effective in Czech Republic, and Poland. Strict protection (International Union for Conservation of Nature [IUCN] protection category Ia‐II) was not more effective than landscape‐level protection (IUCN III‐VI). We suggest that the strength of institutions, the differences in forest privatization, forest management, prior distribution of protected areas, and when countries joined the European Union may provide explanations for the strikingly heterogeneous effectiveness patterns among countries. Our results highlight how different the effects of protected areas can be at broad scales, indicating that the effectiveness of protected areas is transitory over time and space and suggesting that generalizations about the effectiveness of protected areas can be misleading.  相似文献   
7.
Habitat fragmentation is a primary driver of wildlife loss, and establishment of biological corridors is a common strategy to mitigate this problem. A flagship example is the Mesoamerican Biological Corridor (MBC), which aims to connect protected forest areas between Mexico and Panama to allow dispersal and gene flow of forest organisms. Because forests across Central America have continued to degrade, the functioning of the MBC has been questioned, but reliable estimates of species occurrence were unavailable. Large mammals are suitable indicators of forest functioning, so we assessed their conservation status across the Isthmus of Panama, the narrowest section of the MBC. We used large-scale camera-trap surveys and hierarchical multispecies occupancy models in a Bayesian framework to estimate the occupancy of 9 medium to large mammals and developed an occupancy-weighted connectivity metric to evaluate species-specific functional connectivity. White-lipped peccary (Tayassu pecari), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), white-tailed deer (Odocoileus virginianus), and tapir (Tapirus bairdii) had low expected occupancy along the MBC in Panama. Puma (Puma concolor), red brocket deer (Mazama temama), ocelot (Leopardus pardalis), and collared peccary (Pecari tajacu), which are more adaptable, had higher occupancy, even in areas with low forest cover near infrastructure. However, the majority of species were subject to ≥1 gap that was larger than their known dispersal distances, suggesting poor connectivity along the MBC in Panama. Based on our results, forests in Darien, Donoso–Santa Fe, and La Amistad International Park are critical for survival of large terrestrial mammals in Panama and 2 areas need restoration.  相似文献   
8.
Hunted wild animals (i.e., bushmeat) are a main source of protein for many rural populations in the tropics, and the unsustainable harvest of these animals puts both human food security and ecosystem functioning at risk. To understand the correlates of bushmeat consumption, we surveyed 1219 households in 121 rural villages near three newly established national parks in Gabon. Through the surveys we gathered information on bushmeat consumption, income, and material assests. In addition, we quantified land cover in a 5-km radius around the village center and distance of the village center to the nearest park boundary. Bushmeat was not a source of income for most households, but it was the primary animal protein consumed. Ninety-seven percent of households consumed bushmeat at least once during a survey period of 12 days. Income or wealth, land cover, distance of village to the nearest park boundary, and level of education of the head of the household were among the factors that significantly related to the likelihood of consuming any of the 10 most commonly consumed species of bushmeat. Household size was the predictor most strongly associated with quantities of bushmeat consumed and was negatively related to consumption. Total bushmeat consumption per adult male equivalent increased as household wealth increased and decreased as distance of villages to park boundaries increased. Bushmeat consumption at the household level was not related to unit values (i.e., price estimates for a good that typically does not have a market value; estimates derived from willingness to sell or trade the good for items of known price) of bushmeat or the price of chicken and fish as potential substitutes. The median consumption of bushmeat at the village level, however, was negatively related to village mean unit values of bushmeat across all species. Our results suggest that a lack of alternative protein sources motivated even the wealthiest among surveyed households to consume bushmeat. Providing affordable, alternative protein sources to all households would likely reduce unsustainable levels of bushmeat consumption in rural Gabon.  相似文献   
9.
Passive acoustic monitoring could be a powerful way to assess biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices (i.e., a mathematical summary of acoustic energy) offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examined the relationship between acoustic indices and the diversity and abundance of biological sounds in recordings. We reviewed the acoustic‐index literature and found that over 60 indices have been applied to a range of objectives with varying success. We used 36 of the most indicative indices to develop a predictive model of the diversity of animal sounds in recordings. Acoustic data were collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental United States. For terrestrial recordings, random‐forest models with a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R2 ≥ 0.94, mean squared error [MSE] ≤170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively affected by insect, weather, and anthropogenic sounds. For marine recordings, random‐forest models poorly predicted Shannon diversity, richness, and total number of biological sounds (R2 ≤ 0.40, MSE ≥ 195). Our results suggest that using a combination of relevant acoustic indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats.  相似文献   
10.
Abstract: Populations at the margin of geographic ranges of distribution have been considered more vulnerable than central ones, but recent reviews have caste doubt on this generalization. We examined the reproductive and demographic performance of a rare Euroasiatic orchid (Cypripedium calceolus) at its southwesterly range limit and compared our findings with those of previous studies of nine central populations at the center of the orchid's range. We sought to test the central‐marginal model and to evaluate factors involved in long‐term performance of forest Eurosiberian species with peripheral populations in southern European mountains. We characterized (structure, temporal fluctuations, herbivory, reproductive success, and recruitment at different habitats) four Pyrenean populations of C. calceolus of different sizes (5–3500 ramets) and monitored three of them for up to 13 years. Two quantitative stochastic models (count data and matrix models) were used to assess population trends and viability and the effect of herbivory. Contrary to expectations, and despite the negative effect of sporadic events of herbivory, the peripheral populations we studied (except the smallest one) performed similarly or better than populations occurring in central part of the species’ range in terms of reproductive success and population growth rates. Landscape changes over the last 50 years suggest that natural reforestation could be involved in the success of this plant at its southern limit. Forest expansion in the mountain regions of southern Europe may provide new opportunities for plants with geographic distributions centered mainly at higher latitudes and give some hope for their recovery in future scenarios dominated by biodiversity loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号