首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
基础理论   7篇
  2023年   1篇
  2015年   2篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Abstract: Parks are cornerstones of conservation; and non‐native invasive species drive extensive changes to biological diversity in parks. Knowing this, national park staff at Lake Mead National Recreation Area in the southwestern United States had a program in place for early detection of the non‐native, invasive quagga mussel (Dreissena rostriformis bugensis). Upon finding the mussel in January 2007, managers moved quickly to access funding and the best available science to implement a response. Managers considered four options—doing nothing, closing the park, restricting movement on the lakes, and educating and enforcing park visitors—and decided to focus on education and enforcing existing laws. Nonetheless, quagga spread throughout the park and soon began to appear throughout the western United States. I examined why efforts to control the expansion failed and determined the general lessons to be learned from this case. Concentrating human visitation on the lakes through land‐use zoning opened a pathway for invasion, reduced management options, and led to the rapid spread of quagga. To reconcile competing mandates to protect nature and provide recreation, zoning in parks has become a common practice worldwide. It reduces stress on some areas of a park by restricting and thus concentrating human activity in particular areas. Concentrating the human activity in one area does three things: cements pathways that repeatedly import and export vectors of non‐native invasive species; creates the disturbed area necessary to enable non‐native invasive species to gain a foothold; and, establishes a source of invasions that, without appropriate controls, can quickly spread to a park's wilderness areas.  相似文献   
2.
Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non‐native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e‐commerce). Using an automated search algorithm, we surveyed, on a daily basis, e‐commerce trade on 10 major online auction sites (including eBay) of approximately three‐fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio‐economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non‐invasive species were available online. Typically, for a particular plant family, 30–80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e‐commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade.  相似文献   
3.
Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie–woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire‐history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point‐return times ranging from 5–10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke‐cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine‐grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information is available, it seems prudent to limit the use of prescribed burning east of the prairie–woodland transition zone. Reevaluación del Uso de Fuego como Herramienta de Manejo en Bosques Deciduos de América del Norte  相似文献   
4.
Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species’ impacts, which may be particularly important under climate change. We used a spatially explicit metapopulation viability model to explore suppression strategies for ecologically damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary in Grand Canyon National Park. Our goals were to estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation; quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. Our models included scenarios targeting different life stages with spatially varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life stages. Brown trout population growth rates were most sensitive to changes in age 0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was 12 years compared with 4 with a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was achieved only through refocusing and increasing suppression. Our modeling approach improves understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies and, ultimately, maintenance of populations of endemic fishes.  相似文献   
5.
Conservation biologists are generally united in efforts to curtail the spread of non‐native species globally. However, the colonization history of a species is not always certain, and whether a species is considered non‐native or native depends on the conservation benchmark. Such ambiguities have led to inconsistent management. Within the Tongass National Forest of Alaska, the status of American marten (Martes americana) on the largest, most biologically diverse and deforested island, Prince of Wales (POW), is unclear. Ten martens were released to POW in the early 1930s, and it was generally believed to be the founding event, although this has been questioned. The uncertainty surrounding when and how martens colonized POW complicates management, especially because martens were selected as a design species for the Tongass. To explore the history of martens of POW we reviewed other plausible routes of colonization; genetically and isotopically analyzed putative marten fossils deposited in the late Pleistocene and early Holocene to verify marten occupancy of POW; and used contemporary genetic data from martens on POW and the mainland in coalescent simulations to identify the probable source of the present‐day marten population on POW. We found evidence for multiple routes of colonization by forest‐associated mammals beginning in the Holocene, which were likely used by American martens to naturally colonize POW. Although we cannot rule out human‐assisted movement of martens by Alaskan Natives or fur trappers, we suggest that martens be managed for persistence on POW. More generally, our findings illustrate the difficulty of labeling species as non‐native or native, even when genetic and paleo‐ecological data are available, and support the notion that community resilience or species invasiveness should be prioritized when making management decisions rather than more subjective and less certain conservation benchmarks.  相似文献   
6.
The extinction of large herbivores, often keystone species, can dramatically modify plant communities and impose key biotic thresholds that may prevent an ecosystem returning to its previous state and threaten native biodiversity. A potentially innovative, yet controversial, landscape‐based long‐term restoration approach is to replace missing plant‐herbivore interactions with non‐native herbivores. Aldabran giant (Aldabrachelys gigantea) and Madagascan radiated (Astrochelys radiata) tortoises, taxonomically and functionally similar to the extinct Mauritian giant tortoises (Cylindraspis spp.), were introduced to Round Island, Mauritius, in 2007 to control the non‐native plants that were threatening persistence of native species. We monitored the response of the plant community to tortoise grazing for 11 months in enclosures before the tortoises were released and, compared the cost of using tortoises as weeders with the cost of using manual labor. At the end of this period, plant biomass; vegetation height and cover; and adult, seedling, flower, and seed abundance were 3–136 times greater in adjacent control plots than in the tortoise enclosures. After their release, the free‐roaming tortoises grazed on most non‐native plants and significantly reduced vegetation cover, height, and seed production, reflecting findings from the enclosure study. The tortoises generally did not eat native species, although they consumed those native species that increased in abundance following the eradication of mammalian herbivores. Our results suggest that introduced non‐native tortoises are a more cost‐effective approach to control non‐native vegetation than manual weeding. Numerous long‐term outcomes (e.g., change in species composition and soil seed bank) are possible following tortoise releases. Monitoring and adaptive management are needed to ensure that the replacement herbivores promote the recovery of native plants. Estudiando el Potencial para Restaurar Ecosistemas Históricos de Forrajeo con Reemplazos Ecológicos de Tortugas Terrestres  相似文献   
7.
Predicting Risk of Habitat Conversion in Native Temperate Grasslands   总被引:1,自引:0,他引:1  
Abstract: Native grasslands that support diverse populations of birds are being converted to cropland at an increasing rate in the Prairie Pothole Region of North America. Although limited funding is currently available to mitigate losses, accurate predictions of probability of conversion would increase the efficiency of conservation measures. We studied conversion of native grassland to cropland in the Missouri Coteau region of North and South Dakota (U.S.A.) during 1989–2003. We estimated the probability of conversion of native grassland to cropland with satellite imagery and logistic regression models that predicted risk of conversion and by comparing the overlap between areas of high biological value and areas most vulnerable to conversion. Annualized probability of conversion was 0.004, and 36,540 ha of native grassland were converted to cropland during the period of our study. Our predictive models fit the data and correctly predicted 70% of observed conversions of grassland. Probability of conversion varied spatially and was correlated with landscape features like amount of surrounding grassland, slope, and soil productivity. Tracts of high biological value were not always at high risk of conversion. We concluded the most biologically valuable areas that are most vulnerable to conversion should be prioritized for conservation. This approach can be applied broadly to other systems and offers great utility for implementing conservation in areas with spatially variable biological value and probability of conversion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号