首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   7篇
基础理论   41篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2016年   4篇
  2015年   3篇
  2013年   6篇
  2012年   2篇
  2011年   8篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Loss of natural forests by forest clearcutting has been identified as a critical conservation challenge worldwide. This study addressed forest fragmentation and loss in the context of the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status, and ecosystem services. Through retrospective analysis of satellite images, we assessed a 50- to 60-year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. This period broadly covers the whole forest clearcutting period; thus, our approach and results can be applied to comprehensive impact assessment of industrial forest management. The entire study region covers close to 46,000 km2 of forest-dominated landscape in a late phase of transition from a natural or near-natural to a land-use modified state. We found a substantial loss of intact forest, in particular of large, contiguous areas, a spatial polarization of remaining forest on regional scale where the inland has been more severely affected than the mountain and coastal zones, and a pronounced impact on interior forest core areas. Salient results were a decrease in area of the largest intact forest patch from 225,853 to 68,714 ha in the mountain zone and from 257,715 to 38,668 ha in the foothills zone, a decrease from 75% to 38% intact forest in the inland zones, a decrease in largest patch core area (assessed by considering 100-m patch edge disturbance) from 6114 to 351 ha in the coastal zone, and a geographic imbalance in protected forest with an evident predominance in the mountain zone. These results demonstrate profound disturbance of configuration of the natural forest landscape and disrupted connectivity, which challenges the establishment of functional green infrastructure. Our approach supports the identification of forests for expanded protection and conservation-oriented forest landscape restoration.  相似文献   
2.
Abstract: The links between species–environment relations and species’ responses to protection are unclear, but the objectives of marine protected areas (MPAs) are most likely to be achieved when those relations are known and inform MPA design. The components of a species’ habitat vary with the spatial resolution of the area considered. We characterized areas at two resolutions: 250 m2 (transect) and approximately 30,000 m2 (seascape). We considered three categories of environmental variables: substrate type, bottom complexity, and depth. We sought to determine at which resolution habitat characteristics were a better predictor of abundance and species composition of fishes and whether the relations with environmental variables at either resolution affected species’ responses to protection. Habitat features accounted for a larger proportion of spatial variation in species composition and abundances than differences in protection status. This spatial variation was explained best by habitat characteristics at the seascape level than at the transect level. Species’ responses to protected areas were specific to particular seascape characteristics, primarily depth, and bottom complexity. Our method may be useful for prioritizing marine areas for protection, designing MPAs, and monitoring their effectiveness. It identified areas that provided natural shelter, areas acting as buffer zones, and areas where fish species were most responsive to protection. The identification of such areas is necessary for cost‐effective establishment and monitoring of MPAs.  相似文献   
3.
4.
Fire influences the distribution of fauna in terrestrial biomes throughout the world. Use of fire to achieve a mosaic of vegetation in different stages of succession after burning (i.e., patch‐mosaic burning) is a dominant conservation practice in many regions. Despite this, knowledge of how the spatial attributes of vegetation mosaics created by fire affect fauna is extremely scarce, and it is unclear what kind of mosaic land managers should aim to achieve. We selected 28 landscapes (each 12.6 km2) that varied in the spatial extent and diversity of vegetation succession after fire in a 104,000 km2 area in the semiarid region of southeastern Australia. We surveyed for reptiles at 280 sites nested within the 28 landscapes. The landscape‐level occurrence of 9 of the 22 species modeled was associated with the spatial extent of vegetation age classes created by fire. Biogeographic context and the extent of a vegetation type influenced 7 and 4 species, respectively. No species were associated with the diversity of vegetation ages within a landscape. Negative relations between reptile occurrence and both extent of recently burned vegetation (≤10 years postfire, n = 6) and long unburned vegetation (>35 years postfire, n = 4) suggested that a coarse‐grained mosaic of areas (e.g. >1000 ha) of midsuccessional vegetation (11–35 years postfire) may support the fire‐sensitive reptile species we modeled. This age class coincides with a peak in spinifex cover, a keystone structure for reptiles in semiarid and arid Australia. Maintaining over the long term a coarse‐grained mosaic of large areas of midsuccessional vegetation in mallee ecosystems will need to be balanced against the short‐term negative effects of large fires on many reptile species and a documented preference by species from other taxonomic groups, particularly birds, for older vegetation. Mosaicos de Fuego y la Conservación de Reptiles en una Región Propensa al Fuego  相似文献   
5.
Abstract: We reviewed the evidence on the extent and efficacy of conservation of tropical forest biodiversity for each of the classes of conservation action defined by the new International Union for Conservation of Nature (IUCN) classification. Protected areas are the most tested conservation approach, and a number of studies show they are generally effective in slowing deforestation. There is some documentation of the extent of sustainable timber management in tropical forest, but little information on other landscape‐conservation tactics. The extent and effectiveness of ex situ species conservation is quite well known. Forty‐one tropical‐forest species now survive only in captivity. Other single‐species conservation actions are not as well documented. The potential of policy mechanisms, such as international conventions and provision of funds, to slow extinctions in tropical forests is considerable, but the effects of policy are difficult to measure. Finally, interventions to promote tropical conservation by supporting education and livelihoods, providing incentives, and furthering capacity building are all thought to be important, but their extent and effectiveness remain poorly known. For birds, the best studied taxon, the sum of such conservation actions has averted one‐fifth of the extinctions that would otherwise have occurred over the last century. Clearly, tropical forest conservation works, but more is needed, as is critical assessment of what works in what circumstances, if mass extinction is to be averted.  相似文献   
6.
Abstract: The effectiveness of rare plant conservation will increase when life history, demographic, and genetic data are considered simultaneously. Inbreeding depression is a widely recognized genetic concern in rare plant conservation, and the mixing of genetically diverse populations in restoration efforts is a common remedy. Nevertheless, if populations with unrecognized intraspecific chromosome variation are crossed, progeny fitness losses will range from partial to complete sterility, and reintroductions and population augmentation of rare plants may fail. To assess the current state of cytological knowledge of threatened and endangered plants in the continental United States, we searched available resources for chromosome counts. We also reviewed recovery plans to discern whether recovery criteria potentially place listed species at risk by requiring reintroductions or population augmentation in the absence of cytological information. Over half the plants lacked a chromosome count, and when a taxon did have a count it generally originated from a sampling intensity too limited to detect intraspecific chromosome variation. Despite limited past cytological sampling, we found 11 plants with documented intraspecific cytological variation, while 8 others were ambiguous for intraspecific chromosome variation. Nevertheless, only one recovery plan addressed the chromosome differences. Inadequate within‐species cytological characterization, incomplete sampling among listed taxa, and the prevalence of interspecific and intraspecific chromosome variation in listed genera, suggests that other rare plants are likely to have intraspecific chromosome variation. Nearly 90% of all recovery plans called for reintroductions or population augmentation as part of recovery criteria despite the dearth of cytological knowledge. We recommend screening rare plants for intraspecific chromosome variation before reintroductions or population augmentation projects are undertaken to safeguard against inadvertent mixtures of incompatible cytotypes.  相似文献   
7.
Habitat fragmentation is a primary driver of wildlife loss, and establishment of biological corridors is a common strategy to mitigate this problem. A flagship example is the Mesoamerican Biological Corridor (MBC), which aims to connect protected forest areas between Mexico and Panama to allow dispersal and gene flow of forest organisms. Because forests across Central America have continued to degrade, the functioning of the MBC has been questioned, but reliable estimates of species occurrence were unavailable. Large mammals are suitable indicators of forest functioning, so we assessed their conservation status across the Isthmus of Panama, the narrowest section of the MBC. We used large-scale camera-trap surveys and hierarchical multispecies occupancy models in a Bayesian framework to estimate the occupancy of 9 medium to large mammals and developed an occupancy-weighted connectivity metric to evaluate species-specific functional connectivity. White-lipped peccary (Tayassu pecari), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), white-tailed deer (Odocoileus virginianus), and tapir (Tapirus bairdii) had low expected occupancy along the MBC in Panama. Puma (Puma concolor), red brocket deer (Mazama temama), ocelot (Leopardus pardalis), and collared peccary (Pecari tajacu), which are more adaptable, had higher occupancy, even in areas with low forest cover near infrastructure. However, the majority of species were subject to ≥1 gap that was larger than their known dispersal distances, suggesting poor connectivity along the MBC in Panama. Based on our results, forests in Darien, Donoso–Santa Fe, and La Amistad International Park are critical for survival of large terrestrial mammals in Panama and 2 areas need restoration.  相似文献   
8.
Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas’ morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments’ creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old‐growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat.  相似文献   
9.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   
10.
Abstract: The natterjack toad (Bufo calamita) is endangered in several parts of its distribution, including Belgium, where it occurs mainly in artificial habitats. We parameterized a general model for natterjack population viability analysis (PVA) and tested its sensitivity to changes in the values of basic parameters. Then we assessed the relative efficiency of various conservation measures in 2 situations: a small isolated population and a system of 4 populations connected by rare dispersal movements. We based the population viability analysis on a stage‐structured model of natterjack population dynamics. We parameterized the model in the RAMAS GIS platform with vital rates obtained from our own field experience and from published studies. Simulated natterjack populations were highly sensitive to habitat quality (particularly pond drying), to dispersal from surrounding local populations, and to a lesser extent to values of fecundity and survival of terrestrial stages. Population trajectories were nearly insensitive to initial abundances, carrying capacities, and the frequency of extreme climatic conditions. The simulations showed that in habitats with highly ephemeral ponds, where premetamorphosis mortality was high, natterjack populations nearly always had a very high extinction risk. We also illustrated how low dispersal rates (<1 dispersing individual/generation) efficiently rescued declining local populations. Such source‐sink dynamics demonstrate that the identification and management of source populations should be a high priority.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号