首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   12篇
基础理论   19篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2010年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait‐based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co‐occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue‐chemistry traits differed significantly between rare and common, co‐occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting.  相似文献   
2.
Conservation and development practitioners increasingly promote community forestry as a way to conserve ecosystem services, consolidate resource rights, and reduce poverty. However, outcomes of community forestry have been mixed; many initiatives failed to achieve intended objectives. There is a rich literature on institutional arrangements of community forestry, but there has been little effort to examine the role of socioeconomic, market, and biophysical factors in shaping both land‐cover change dynamics and individual and collective livelihood outcomes. We systematically reviewed the peer‐reviewed literature on community forestry to examine and quantify existing knowledge gaps in the community‐forestry literature relative to these factors. In examining 697 cases of community forest management (CFM), extracted from 267 peer‐reviewed publications, we found 3 key trends that limit understanding of community forestry. First, we found substantial data gaps linking population dynamics, market forces, and biophysical characteristics to both environmental and livelihood outcomes. Second, most studies focused on environmental outcomes, and the majority of studies that assessed socioeconomic outcomes relied on qualitative data, making comparisons across cases difficult. Finally, there was a heavy bias toward studies on South Asian forests, indicating that the literature on community forestry may not be representative of decentralization policies and CFM globally.  相似文献   
3.
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species’ biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change‐threatened species on the IUCN Red List concur with those of climate change‐threatened species identified with the trait‐based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change‐threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait‐based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change‐vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population‐level threats).  相似文献   
4.
To reduce future loss of biodiversity and to allocate conservation funds effectively, the major drivers behind large‐scale extinction processes must be identified. A promising approach is to link the red‐list status of species and specific traits that connect species of functionally important taxa or guilds to resources they rely on. Such traits can be used to detect the influence of anthropogenic ecosystem changes and conservation efforts on species, which allows for practical recommendations for conservation. We modeled the German Red List categories as an ordinal index of extinction risk of 1025 saproxylic beetles with a proportional‐odds linear mixed‐effects model for ordered categorical responses. In this model, we estimated fixed effects for intrinsic traits characterizing species biology, required resources, and distribution with phylogenetically correlated random intercepts. The model also allowed predictions of extinction risk for species with no red‐list category. Our model revealed a higher extinction risk for lowland and large species as well as for species that rely on wood of large diameter, broad‐leaved trees, or open canopy. These results mirror well the ecological degradation of European forests over the last centuries caused by modern forestry, that is the conversion of natural broad‐leaved forests to dense conifer‐dominated forests and the loss of old growth and dead wood. Therefore, conservation activities aimed at saproxylic beetles in all types of forests in Central and Western Europe should focus on lowlands, and habitat management of forest stands should aim at increasing the amount of dead wood of large diameter, dead wood of broad‐leaved trees, and dead wood in sunny areas.  相似文献   
5.
Although animal personality research may have applied uses, this suggestion has yet to be evaluated by assessing empirical studies examining animal personality and conservation. To address this knowledge gap, we performed a systematic review of the peer-reviewed literature relating to conservation science and animal personality. Criteria for inclusion in our review included access to full text, primary research articles, and relevant animal conservation or personality focus (i.e., not human personality studies). Ninety-two articles met these criteria. We summarized the conservation contexts, testing procedures (including species and sample size), analytical approach, claimed personality traits (activity, aggression, boldness, exploration, and sociability), and each report's key findings and conservation-focused suggestions. Although providing evidence for repeatability in behavior is crucial for personality studies, repeatability quantification was implemented in only half of the reports. Nonetheless, each of the 5 personality traits were investigated to some extent in a range of conservations contexts. The most robust studies in the field showed variance in how personality relates to other ecologically important variables across species and contexts. Moreover, many studies were first attempts at using personality for conservation purposes in a given study system. Overall, it appears personality is not yet a fully realized tool for conservation. To apply personality research to conservation problems, we suggest researchers think about where individual differences in behavior may affect conservation outcomes in their system, assess where there are opportunities for repeated measures, and follow the most current methodological guides on quantifying personality.  相似文献   
6.
Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1–43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity.  相似文献   
7.
We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross‐national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost.  相似文献   
8.
The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small‐scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem‐based management approaches. However, ecosystem‐based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life‐history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade‐offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem‐based fisheries management targets that can be easily applied even where research capacity and information is limited. Of particular value, is our finding that current management tools may be used to reach key ecosystem‐based management targets, enabling ecosystem‐based management in many socioeconomic contexts.  相似文献   
9.
Wildlife health assessments help identify populations at risk of starvation, disease, and decline from anthropogenic impacts on natural habitats. We conducted an overview of available health assessment studies in noncaptive vertebrates and devised a framework to strategically integrate health assessments in population monitoring. Using a systematic approach, we performed a thorough assessment of studies examining multiple health parameters of noncaptive vertebrate species from 1982 to 2020 (n = 261 studies). We quantified trends in study design and diagnostic methods across taxa with generalized linear models, bibliometric analyses, and visual representations of study location versus biodiversity hotspots. Only 35% of studies involved international or cross-border collaboration. Countries with both high and threatened biodiversity were greatly underrepresented. Species that were not listed as threatened on the International Union for Conservation of Nature Red List represented 49% of assessed species, a trend likely associated with the regional focus of most studies. We strongly suggest following wildlife health assessment protocols when planning a study and using statistically adequate sample sizes for studies establishing reference ranges. Across all taxa blood analysis (89%), body composition assessments (81%), physical examination (72%), and fecal analyses (24% of studies) were the most common methods. A conceptual framework to improve design and standardize wildlife health assessments includes guidelines on the experimental design, data acquisition and analysis, and species conservation planning and management implications. Integrating a physiological and ecological understanding of species resilience toward threatening processes will enable informed decision making regarding the conservation of threatened species.  相似文献   
10.
Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species’ phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号