首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   4篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Abstract: The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long‐term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry‐forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks—livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb–shrub richness in the livestock‐free block, but had no effect on that of tree seedlings in either livestock block. Tree‐seedling and herb–shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana‐free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey‐dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long‐term protection of these forests as viable tiger habitats.  相似文献   
2.
Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human‐wildlife conflict. We conducted a meta‐analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. Meta‐Análisis de las Posturas hacia la Mamíferos Silvestres Causantes de Daños  相似文献   
3.
Abstract: Understanding the spatial dimensions of hunting and prey population dynamics is important in order to estimate the sustainability of hunting in tropical forests. We investigated how hunting offtake of vertebrates differed in mixed forest and monodominant forest (composed of Gilbertiodendron dewevrei) and over different spatial extents within the hunting catchment around the logging town of Kabo, Congo. In 9 months of recall surveys with hunters, we gathered information on over 1500 hunting trips in which ungulates were 65% of the species killed and 82% of harvested biomass. Hunters supplied information on animals killed and the hunting trip, including the area visited (i.e., hunting zone; 11 separate zones within a 506 km2 catchment or commonly hunted area). Over 65% of all animals were killed in monodominant forest, which made up 28% of the hunting catchment, and zones with small amounts of monodominant forest were used most frequently by hunters. Given the large offtakes from monodominant forests, we suggest that animal dispersal may be maintaining high, localized harvests in these areas. We believe hunters preferred to hunt in monodominant forest because the understory was accessible and that areas with small amounts of monodominant forest and large amounts of mixed forest were more productive. The variation in hunting pressure we found between and within hunting zones differs from past examinations of spatial variation in hunting offtake, where entire hunting catchments were considered population sinks and areas with low to no hunting (no‐take zones) were outside hunting catchments. Future use of no‐take zones to manage hunting should incorporate variability in offtake within hunting catchments.  相似文献   
4.
Abstract: Wildlife‐exclusion fencing and wildlife‐crossing structures (e.g., underpasses and overpasses) are becoming increasingly common features of highway projects around the world. The prey‐trap hypothesis posits that predators exploit crossing structures to detect and capture prey. The hypothesis predicts that predation events occur closer to a highway after the construction of fences and crossing structures and that prey species’ use of crossings increases the probability that predators will attack prey. We examined interactions between ungulates and large carnivores at 28 wildlife crossing structures along 45 km of the Trans‐Canada Highway in Banff National Park, Alberta. We obtained long‐term records of locations where ungulates were killed (kill sites) before and after crossing structures were built. We also placed remote, motion‐triggered cameras at two crossing structures to monitor predator behavior following ungulate passage through the structure. The proximity of ungulate kill sites to the highway was similar before and after construction of fencing and crossing structures. We found only five kill sites near crossing structures after more than 32,000 visits over 13 years. We found no evidence that predator behavior at crossing structures is affected by prey movement. Our results suggest that interactions between large mammals and their prey at wildlife‐crossing structures in Banff National Park are not explained by the prey‐trap hypothesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号