首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   14篇
  国内免费   56篇
安全科学   6篇
环保管理   8篇
综合类   104篇
基础理论   48篇
污染及防治   28篇
评价与监测   19篇
灾害及防治   1篇
  2024年   1篇
  2023年   5篇
  2022年   8篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   14篇
  2013年   14篇
  2012年   11篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   14篇
  2007年   14篇
  2006年   11篇
  2005年   9篇
  2004年   14篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
1.
摘要:文章采用实验室内部的非标准方法《底泥中阿特拉津残留量的液相色谱测定方法》测定底泥中的阿特拉津残留量。通过对影响测定结果的不确定度分量的分析和量化,求出被测量的标准不确定度,给出各分量对测定结果不确定度的相对贡献,对测定结果进行了表述。对实际河道底泥样品中的阿特拉津残留量进行了测定,得到阿特拉津农药残留量的拓展不确定度为0.23ug/g,k=2。  相似文献   
2.
This work was designed to explore the characteristics of photodegradation of herbicides in the copper-polluted water body. The results showed that Cu(II) alone could induce a photo Fenton-like reaction to enhance the degradation of atrazine, in which hydroxyl radical ( OH) was a main active species. Humic acids restrained atrazine degradation, nevertheless, when introducing Cu(II), the photodegradation was accelerated, in which singlet oxygen (1O2) replaced OH acting as the prevailing species. A feasible mechanism for the photochemical process was also proposed, which is helpful for better understanding the environmental photochemistry of atrazine in the copper-polluted water.  相似文献   
3.
介绍了湖北省清江高坝洲津洋口防护区的概况,对津洋口防护区水环境污染现状进行了分析和调查研究,同时得出了防护区的主要污染为工业废水污染.计算了津洋口防护区丹水河的水环境容量,并据此提出水环境污染治理方案.  相似文献   
4.
超高效液相色谱法测定土壤中微量阿特拉津   总被引:1,自引:0,他引:1  
采用超高效液相色谱仪,建立了土壤中微量阿特拉津的快速检测方法.研究结果表明:采用反相C18色谱柱,以甲醇/水(70:30,v/v)为流动相,流速为0.2 ml/min,柱温为30℃,检测波长为220 nm条件下,在12.5~1000μg/L质量浓度范围内线性关系良好(r=0.9999),检出限0.18×10-3 mg/...  相似文献   
5.
UV-H_2O_2联用工艺去除水中阿特拉津的研究   总被引:2,自引:0,他引:2  
采用间歇式反应器考察了UV-H2O2高级氧化技术去除水中阿特拉津的效果及其影响因素,并进行了相关的反应动力学研究。结果表明,在pH值6.9,阿特拉津初始浓度500μg/L,紫外辐照强度172μW/cm2时,H2O2投加量50mg/L,反应10min后,阿特拉津的去除率90%。UV-H2O2联用工艺对阿特拉津的降解符合一级反应动力学。H2O2在该联用工艺降解阿特拉津中具有双重作用,一方面,当H2O2投加量较小时,一级反应速率常数随H2O2投加量的增加基本呈现线性增加的趋势;另一方面,当H2O2浓度增加到一定程度(90mg/L)后,阿特拉津的降解速率随H2O2浓度的变化已不明显,而H2O2浓度为102mg/L时,则出现了抑制作用。  相似文献   
6.
探讨了天然水体中存在的腐殖酸(HA)可见光降解水中阿特拉津的动力学特征和影响因素。结果表明,pH对HA可见光降解阿特拉津具有明显影响,水中HA质量浓度为5.0mg/L时,pH为3、5、7、9的条件下,受可见光照6.00h后阿特拉津(初始质量浓度5mg/L)的去除率分别为75.5%、77.3%、91.7%、84.9%,中性条件下阿特拉津可见光降解效果最佳;当HA质量浓度分别为1.5、3.0、5.0、10.0mg/L时,HA对水中阿特拉津的可见光降解均表现为促进作用,且降解过程符合一级反应动力学方程,其一级反应动力学常数分别为0.337 0、0.361 4、0.445 4、0.314 6h-1,HA为5.0mg/L时阿特拉津的可见光降解效果最佳。实际应用中,可以通过优化HA与阿特拉津的浓度比值,发挥HA促进阿特拉津可见光降解的最佳效能。  相似文献   
7.
为了提高阿特拉津降解菌Acinetobacter sp.DNS32的产量,分别采用响应曲面法和基于人工神经网络的遗传算法对阿特拉津降解菌DNS32发酵培养基中3个重要基质成分(玉米粉、豆饼粉、K2HPO4)进行优化研究。响应曲面法确定3种成分的含量为玉米粉39.494 g/L,豆饼粉25.638 g/L和K2HPO43.265 g/L时,预测发酵活菌最大生物量为7.079×108CFU/mL,实测量为7.194×108CFU/mL;人工神经网络结合遗传算法优化确定3种主要成分含量为玉米粉为39.650 g/L,豆饼粉为25.500 g/L,K2HPO4为2.624 g/L时,预测最大值为7.199×108CFU/mL,实测量为7.244×108CFU/mL;最终确定培养基配方:玉米粉为39.650 g/L,豆饼粉为25.500 g/L,K2HPO4为2.624 g/L,CaCO3为3.000 g/L,MgSO4.7H2O和NaCl均为0.200 g/L;优化后阿特拉津降解菌DNS32发酵生物量比优化前提高了36.6%。结果表明,在阿特拉津降解菌DNS32发酵培养基组分优化方面,响应面法和基于人工神经网络的遗传算法都是可行的,基于人工神经网络的遗传算法具有更好的拟合度和预测准确度。  相似文献   
8.
高效阿特拉津降解菌株DNS10降解条件优化   总被引:2,自引:0,他引:2  
从长期施用阿特拉津的寒地黑土耕层(0~10 cm)土壤中筛选到一株能以除草剂阿特拉津为氮源生长的降解菌株,结合16S rRNA序列分析结果,将该菌株命名为Arthrobacter sp.DNS10。在接种量为108CFU/mL的条件下,菌株DNS10在24 h内对100 mg/L阿特拉津的降解率为99.41%。单因子实验结果表明,菌株DNS10适宜生长和降解的条件范围是:温度25~35℃,pH值5.0~8.0,培养液盐度0.1%~2%,对阿特拉津最大耐受浓度可达1 200 mg/L。正交实验法进一步表明,该菌株保持较好生长及降解能力的最优方案是温度30℃,pH值7.5,培养液盐度0.5%。影响其降解能力的环境因素的主次顺序依次是:温度>盐度>pH值。  相似文献   
9.
为了提高阿特拉津降解菌Acinetobactersp.DNS32的产量,分别采用响应曲面法和基于人工神经网络的遗传算法对阿特拉津降解菌DNS32发酵培养基中3个重要基质成分(玉米粉、豆饼粉、K:HPO。)进行优化研究。响应曲面法确定3种成分的含量为玉米粉39.494g/L,豆饼粉25.638g/L和K。HPO。3.265g/L时,预测发酵活菌最大生物量为7.079×10^8CFU/mL,实测量为7.194×10^8CFU/mL;人工神经网络结合遗传算法优化确定3种主要成分含量为玉米粉为39.650g/L,豆饼粉为25.500g/L,K2HPO4为2.624g/L时,预测最大值为7.199×10^8CFU/mL,实测量为7.244×10。CFU/mL;最终确定培养基配方:玉米粉为39.650g/L,豆饼粉为25.500g/L,K2HPO4为2.624g/L,CaCO3为3.000g/L,MgSO4·7H2O和NaCl均为0.200g/L;优化后阿特拉津降解菌DNS32发酵生物量比优化前提高了36.6%。结果表明,在阿特拉津降解菌DNS32发酵培养基组分优化方面,响应面法和基于人工神经网络的遗传算法都是可行的,基于人工神经网络的遗传算法具有更好的拟合度和预测准确度。  相似文献   
10.
我国农药阿特拉津的污染十分严重,对生态系统造成了非常不利的影响. 为了实现对水环境中阿特拉津的高效去除和吸附剂的重复利用,该研究通过溶液浸渍和高温煅烧技术将金属锆负载到活性炭上,制备出功能化材料Zr@AC,使用扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外吸收光谱仪(FTIR)和比表面及孔径分析仪(BET)对材料的形貌和组成进行了表征,并考察了Zr@AC对水中阿特拉津的去除效果. 结果表明:①当浸渍液锆离子的质量分数为7.0%、浸渍时间为9.0 h、煅烧温度为500 ℃和煅烧时间为5.0 h时,制备的Zr@AC具有较大的比表面积、较多的中孔和微孔以及丰富的活性位点. ②对阿特拉津的去除研究表明,当溶液pH为4.0、温度为25 ℃、Zr@AC投加量为60.0 mg/L时,经过90 min的反应,Zr@AC对阿特拉津的吸附容量最大,达到93.8 mg/g. ③动力学模拟研究表明,该吸附过程遵循拟二级动力学模型,且Freundlich等温吸附模型的拟合结果要优于Langmuir等温吸附模型,说明Zr@AC对阿特拉津的吸附存在化学吸附和多分子层吸附的双重作用. ④经过5次重复试验后,Zr@AC对阿特拉津的去除率仍有83.9%. 研究显示,Zr@AC可作为水中去除阿特拉津的吸附剂,是一种很有前途、可重复多次使用的材料.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号