首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   2篇
  2012年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Wang C  Luo X  Tian Y  Xie Y  Wang S  Li Y  Tian L  Wang X 《Chemosphere》2012,86(5):530-537
In the present study, lanthanum (La) as a representative REE was used to explore the mechanisms for alleviation of Cd-induced oxidative damage by extraneous La at appropriate concentrations, and to assess ecological risk of combination of Cd and La at higher concentrations in roots of Vicia faba L. seedlings. The seedlings were hydroponically cultured for 15 d under nutrient solution, 6 μmol L−1 CdCl2, and combination of 6 μmol L−1 CdCl2 and increasing concentrations of La, respectively. The results showed that the supplementation with low concentrations of exogenous La (<120 μmol L−1) led to reduced contents of Cd, Ca, Cu, Zn, Mn or Fe element and increased activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) isozymes as well as heat shock protein 70 (HSP 70) production in the roots. However, the supplementation with higher La (>120 μmol L−1) showed the adverse effects. The contents of Cd elevated above the single Cd treatment in the roots, accompanying with the decline of antioxidant isozyme’s activities and HSP 70, and increment of carbonylated proteins and endoprotease isozyme’s activities. The results also showed that the root growth was not only related to carbonylated proteins, but also to indole acetic acid oxidase activities. Therefore, the supplemented extraneous La contributed to biphasic effects: stimulated antioxidation at lower concentrations and pro-oxidation at higher concentrations against Cd-induced oxidative stress in the roots.  相似文献   
2.
Yan XL  Lin LY  Liao XY  Zhang WB 《Chemosphere》2012,87(1):31-36
Panax notoginseng, a traditional rare Chinese medicinal herb, was recently found to bring health risk to consumers, mainly because soil in its major plantation area was contaminated by arsenic (As). We investigated the effect of soil As pollution on the growth and As uptake of pot-cultured P. notoginseng, and the associated mechanisms of As stressed response. Results showed that, comparing with P. notoginseng growing in a low-As soil, the root, stem, and leaf biomasses of those growing in a high-As soil significantly reduced by 0.75, 0.09 and 0.21 g seedling−1, respectively. Arsenic concentrations in roots, stems and leaves of the seedlings growing in high-As soil were 22, 15 and 3 times higher than those growing in low-As soil, respectively. Regardless of the soil As concentration, As existed in plants mainly as As(III), suggesting that the reduction of As(V) is a key step in As metabolism. Arsenic was distributed primarily in cell walls (51.7% for plants growing in the low-As soil, and 51.5% in the high-As soil), followed by cytoplasm supernatant, with cell organelles containing the least As. Compared with plants growing in the low-As soil, those in the high-As soil had increased superoxide dismutase and peroxidase activities in their roots, stems, and leaves, which would be associate with improving the resistance of P. notoginseng to As stress. The results suggest that there exists some special mechanisms of As-tolerance in P. notoginseng and the study is of significance in developing measures to reduce As in the herb.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号