首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   5篇
  国内免费   75篇
安全科学   6篇
废物处理   5篇
环保管理   5篇
综合类   89篇
基础理论   27篇
污染及防治   30篇
评价与监测   3篇
社会与环境   1篇
灾害及防治   1篇
  2023年   6篇
  2022年   6篇
  2021年   13篇
  2020年   15篇
  2019年   6篇
  2018年   13篇
  2017年   14篇
  2016年   7篇
  2015年   13篇
  2014年   4篇
  2013年   12篇
  2012年   5篇
  2011年   4篇
  2010年   7篇
  2009年   10篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1986年   1篇
排序方式: 共有167条查询结果,搜索用时 31 毫秒
1.
Reclamation of domestic wastewater for agricultural irrigation is viewed as a sustainable option to create an alternative water source and address water scarcity. Free-living amoebae(FLA), which are amphizoic protozoa, are widely distributed in various environmental sources. The FLA could cause considerable environmental and health risks. However, little information is available on the risk of these protozoa. In this study, we evaluated the feasibility using rural domestic wastewater for agricultural irrigation, and analyzed dynamic changes of the microbial community structure and FLA populations in raw and treated wastewater, as well as the phyllosphere and rhizosphere of lettuce production sites that were irrigated with different water sources. The bacterial community dynamics were analyzed by terminal restriction fragment length polymorphism(T-RFLP). The bacterial community structures in the influent were similar to that in the effluent, while in some cases relative abundances varied significantly. The populations of Acanthamoeba spp. and Hartmannella vermiformis in the anaerobically treated wastewater were significantly higher than in the raw wastewater. The vegetables could harbor diverse amoebae, and the abundances of Acanthamoeba spp. and H. vermiformis in the rhizosphere were significantly higher than in the phyllosphere. Accordingly, our studies show insight into the distribution and dissemination of amoebae in wastewater treatment and irrigation practices.  相似文献   
2.
The sulfur-containing odor emitted from sludge composting could be controlled by sulfide oxidizing bacteria, yet mesophilic strains show inactivation during the thermophilic stage of composting. Aimed to investigate and characterize the thermotolerant bacterium that could oxidize sulfide into sulfate, a heterotrophic strain was isolated from sewage sludge composting and identified as Paenibacillus naphthalenovorans LYH-3. The effects of various environmental factors on sulfide oxidation capacities were studied to optimize the sulfate production, and the highest production rate (27.35% ± 0.86%) was obtained at pH 7.34, the rotation speed of 161.14 r/min, and the inoculation amount of 5.83% by employing Box-Behnken design. The results of serial sulfide substrates experiments indicated that strain LYH-3 could survive up to 400 mg/L of sulfide with the highest sulfide removal rate (88.79% ± 0.35%) obtained at 50 mg/L of sulfide. Growth kinetic analysis presented the maximum specific growth rate µm (0.5274 hr−1) after 22 hr cultivation at 50°C. The highest enzyme activities of sulfide quinone oxidoreductase (0.369 ± 0.052 U/mg) and sulfur dioxygenase (0.255 ± 0.014 U/mg) were both obtained at 40°C, and the highest enzyme activity of sulfite acceptor oxidoreductase (1.302 ± 0.035 U/mg) was assessed at 50°C. The results indicated that P. naphthalenovorans possessed a rapid growth rate and efficient sulfide oxidation capacities under thermophilic conditions, promising a potential application in controlling sulfur-containing odors during the thermophilic stage of sludge composting.  相似文献   
3.
蠡河底泥中反硝化复合菌群富集及菌群结构研究   总被引:2,自引:2,他引:0  
雍佳君  成小英 《环境科学》2015,36(6):2232-2238
从无锡市滨湖区蠡河底泥中富集培养反硝化复合菌群,研究其在不同富集培养阶段TN、NO-3-N、NO-2-N、NH+4-N和COD动态变化,分析反硝化过程中气体释放总量、释放速率和成分,通过构建全长16S r DNA克隆文库研究其菌落结构.结果表明,反硝化复合菌群富集在阶段4时脱氮效果最佳,仅在9 h内,330 mg·L-1的TN负荷下,TN去除率达90.9%,NO-3-N去除率达100%,中间产物NO-2-N和NH+4-N积累量最少,分别为3.39 mg·L-1和16.64 mg·L-1,COD去除率达85%;释放气体260m L,气体主要成分为N2,同时还有少量的CH4和CO2等.富集培养反硝化复合菌群细菌属于Pseudomonadaceae科和Rhodocyclaceae科,为Proteobacteria门,OUT丰度分别为57.8%和31.6%,Pseudomonadaceae科是优势类群.  相似文献   
4.
Rainwater contains substantial bacteria and rain is an efficient pathway for the dissemination of bacteria from the atmosphere to land and water surfaces.However,quantitative information on rainwater bacteria is very limited due to the lack of a reliable method.In this study,the epifluorescence microscopy enumeration with the LIVE/DEAD BacLight Bacterial Viability Kit stain was verified to quantify the abundance of viable and non-viable bacterial cells in rainwater,with the 4',6-diamidino-2-phenylindole(DAPI) stain for the reference of total cell counts.Results showed that the total counts of bacterial cells by LIVE/DEAD BacLight staining were consistent with those by DAPI staining,and the average detection efficiency was(109 ± 29)%.The ratio of cell count with glutaraldehyde fixation to that without fixation was(106 ± 5)%on average.The bacterial concentration in negative control was usually an order of magnitude lower than that in rainwater samples.However,in case of small precipitation,the abundance in negative control could be more than that in rainwater samples.These results indicate that the enumeration with LIVE/DEAD BacLight bacterial viability assay coupled with glutaraldehyde fixation and careful negative control investigation is an approach applicable to the measurement of the concentration and viability of bacterial cells in rainwater.  相似文献   
5.
In this study, a lab-scale biological anaerobic/anaerobic/anoxic/membrane bioreactor(A_-~3MBR) was designed to treat wastewater from the ethanol fermentation of food waste,a promising way for the disposal of food waste and reclamation of resources. The 454 pyrosequencing technique was used to investigate the composition of the microbial community in the treatment system. The system yielded a stable effluent concentration of chemical oxygen demand(202 ± 23 mg/L), total nitrogen(62.1 ± 7.1 mg/L), ammonia(0.3 ±0.13 mg/L) and total phosphorus(8.3 ± 0.9 mg/L), and the reactors played different roles in specific pollutant removal. The exploration of the microbial community in the system revealed that:(1) the microbial diversity of anaerobic reactors A_1 and A_2, in which organic pollutants were massively degraded, was much higher than that in anoxic A_3 and aerobic MBR;(2) although the community composition in each reactor was quite different, bacteria assigned to the classes Clostridia, Bacteroidia, and Synergistia were important and common microorganisms for organic pollutant degradation in the anaerobic units, and bacteria from Alphaproteobacteria and Betaproteobacteria were the dominant microbial population in A_3 and MBR;(3) the taxon identification indicated that Arcobacter in the anaerobic reactors and Thauera in the anoxic reactor were two representative genera in the biological process. Our results proved that the biological A_-~3MBR process is an alternative technique for treating wastewater from food waste.  相似文献   
6.
从处理甲硫醚(DMS)和丙硫醇(PT)混合废气的生物滴滤塔中富集出一组能够有效降解甲硫醇(MT)的混合菌群,并对其特性进行了系列研究.结果表明,该混合菌群能有效降解MT,菌群较为适宜的生长和降解条件为30℃、p H=7.0,在该条件下能将初始浓度为20 mg·L~(-1)的MT在70 h内降解完全.添加酵母膏(YE)后,MT降解速率进一步提高,降解所需时间缩短10 h.利用高通量测序技术分析混合菌群的群落结构,发现其中优势菌属为Pseudomonas sp.、Thiobacillus sp.和Acinetobacter sp.,所占比例分别为33.78%、21.91%和17.01%.中间产物检测结果表明,混合菌群降解MT的过程中产生了甲醛、H_2S、二甲基二硫醚(DMDS)等物质,推断MT的降解途径可能有如下2条:(1)MT在MT氧化酶作用下形成甲醛和H2S,随后氧化为SO_4~(2-);(2)MT依次转化为DMDS、DMS、二甲基亚砜(DMSO)和二甲基砜(DMSO_2),最后经甲基磺酸(MSA)可生成SO_4~(2-).  相似文献   
7.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   
8.
In previous studies we detected lower species richness and lower Hg sensitivity of the bacteria present in egested guts of Porcellio scaber (Crustacea, Isopoda) from chronically Hg polluted than from unpolluted environment. Basis for such results were further investigated by sequencing of 16S rRNA genes of mercury-resistant (Hgr) isolates and clone libraries. We observed up to 385 times higher numbers of Hgr bacteria in guts of animals from polluted than from unpolluted environment. The majority of Hgr strains contained merA genes. Sequencing of 16S rRNA clones from egested guts of animals from Hg-polluted environments showed elevated number of bacteria from Pseudomonas, Listeria and Bacteroidetes relatives groups. In animals from pristine environment number of bacteria from Achromobacter relatives, Alcaligenes, Paracoccus, Ochrobactrum relatives, Rhizobium/Agrobacterium, Bacillus and Microbacterium groups were elevated. Such bacterial community shifts in guts of animals from Hg-polluted environment could significantly contribute to P. scaber Hg tolerance.  相似文献   
9.
Dissipation kinetics of mesotrione, a new triketone herbicide, sprayed on soil from Limagne (Puy-de-Dôme, France) showed that the soil microflora were able to biotransform it.Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE). The TTGE fingerprints revealed that mesotrione had an impact on bacterial community structure only at its highest concentrations and showed mesotrione-sensitive and mesotrione-adapted strains. Two adapted strains, identified as Bacillus sp. and Arthrobacter sp., were isolated by colony hybridization methods.Biodegradation assays showed that only the Bacillus sp. strain was able to completely and rapidly biotransform mesotrione. Among several metabolites formed, 2-amino-4-methylsulfonylbenzoic acid (AMBA) accumulated in the medium. Although sulcotrione has a chemical structure closely resembling that of mesotrione, the isolates were unable to degrade it.  相似文献   
10.
Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号