首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   14篇
  国内免费   31篇
安全科学   1篇
废物处理   7篇
环保管理   4篇
综合类   65篇
基础理论   18篇
污染及防治   28篇
评价与监测   2篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2016年   3篇
  2015年   7篇
  2014年   10篇
  2013年   12篇
  2012年   8篇
  2011年   10篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
排序方式: 共有125条查询结果,搜索用时 46 毫秒
1.
Shewanella oneidensis MR-1对硫化汞的生物利用性研究   总被引:2,自引:2,他引:0  
陈艳  王卉  司友斌 《环境科学》2013,34(11):4466-4472
在实验室模拟条件下,研究了铁还原菌奥奈达希瓦式菌Shewanella oneidensis MR-1对固态硫化汞的生物溶解、生物甲基化作用及其影响因素.结果表明,铁还原菌S.oneidensis MR-1在含硫培养基中生长良好,低浓度硫素能够促进其生长,高浓度时细菌生长则受到抑制,这种抑制主要表现在菌株生长曲线迟缓期的延长;铁还原菌S.oneidensis MR-1能够利用固态硫化汞,促进其溶解并迅速进行汞甲基化;在S.oneidensis MR-1的耐硫化物范围内,菌株对硫化汞的生物溶解作用随着硫化钠浓度的增大而增强,但生物甲基化作用只在低浓度硫化钠时受到促进,硫化钠浓度过高时则会受到抑制;此外,弱酸性环境比酸性及中碱性的环境更有利于S.oneidensis MR-1对硫化汞的生物溶解及甲基化.  相似文献   
2.
探析施氏矿物在不同温度、pH下的溶解行为,对其在酸性煤矿废水(ACMD)重金属去除领域的应用具有重要的工程指导意义.本研究通过摇瓶实验,在0.16mol·L-1FeSO4·7H2O,初始pH为2.5的酸性体系中,采用氧化亚铁硫杆菌A.ferrooxidans催化合成施氏矿物.考察了15℃与30℃,pH为2.0$6.0环境条件下矿物的溶解行为,及生物合成施氏矿物对酸性体系Cu2+的吸附去除效果.研究结果表明,经过24h反应,施氏矿物合成体系pH从原始2.50降低至2.18,体系Fe2+氧化完全,27.3%的铁离子参与矿物的合成,矿物分子式可表示为Fe8O8(OH)4.22(SO4)1.89.生物合成施氏矿物在温度为15℃,pH分别为3.2、3.0、2.8、2.6、2.4、2.2与2.0液态体系中振荡72h,矿物溶解率分别为1.92%、3.34%、5.90%、13.09%、28.74%、44.53%与61.46%.在温度为30℃的上述酸度体系中,矿物溶解率在相应时间却达到2.04%、3.98%、8.34%、20.53%、43.50%、96.74%与99.92%.在pH≥3.5的不同温度液态体系中该矿物无溶解迹象.在15℃,pH为6.0、5.0、4.5、4.0与3.5,Cu2+浓度为40mg·g-1的液态体系中,生物合成施氏矿物对Cu2+的吸附量为(50.9±2.2)、(47.3±13.3)、(40.5±4.7)、(31.1±5.0)及(16.9±6.5)mg·g-1.体系酸度一定,施氏矿物在15℃与30℃条件下对Cu2+的吸附效果无显著差异.本研究结果对生物合成施氏矿物在ACMD重金属去除工程应用提供必要的参数支撑.  相似文献   
3.
Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr(2+) and SrEDTA(2-). The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA(2-) complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr(2+) as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr(2+) and SrEDTA(2-) suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA(2-), MnEDTA(2-), PbEDTA(2-), and unidentified Sr and Ca complexes. Displacement of Sr(2+) through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that sandy sediments of low water content constituted the immobile flow regime. Our results suggested that the sequestration of Sr(2+) in partially-saturated, heterogeneous sediments was most likely due to the formation of immobile water in drier regions having low hydraulic conductivities.  相似文献   
4.
二氧化碳水合物储气特性的实验研究   总被引:2,自引:0,他引:2  
利用二氧化碳水合物小型实验装置分别在恒容和恒压条件下,研究了机械搅拌对二氧化碳气体溶解的影响以及温度与水-气比对二氧化碳水合物形成和储气密度的影响。通过实验结果发现,机械搅拌对二氧化碳的溶解有非常明显的促进作用,可以在3 min内完成溶解过程,促进溶解作用好于添加剂SDS。研究还发现,反应温度越低,二氧化碳水合物的生成速率越快,总的储气量越大,而水-气比越大,储气密度越小。在实验压力3 MPa、反应温度273.55 K的条件下,1体积的水生成水合物后可储存157体积的二氧化碳。  相似文献   
5.
Microbial reductive dechlorination of trichloroethene (TCE) and perchloroethene (PCE) in the vicinity of their dense non-aqueous phase liquid (DNAPL) has been shown to accelerate DNAPL dissolution. A three-layer diffusion-cell was developed to quantify this bio-enhanced dissolution and to measure the conditions near the DNAPL interface. The 12 cm long diffusion-cell setup consists of a 5.5 cm central porous layer (sand), a lower 3.5 cm DNAPL layer and a top 3 cm water layer. The water layer is frequently refreshed to remove chloroethenes at the upper boundary of the porous layer, while the DNAPL layer maintains the saturated chloroethene concentration at the lower boundary. Two abiotic and two biotic diffusion-cells with TCE DNAPL were tested. In the abiotic diffusion-cells, a linear steady state TCE concentration profile between the DNAPL and the water layer developed beyond 21 d. In the biotic diffusion-cells, TCE was completely converted into cis-dichloroethene (cis-DCE) at 2.5 cm distance of the DNAPL. Dechlorination was likely inhibited up to a distance of 1.5 cm from the DNAPL, as in this part the TCE concentration exceeded the culture’s maximum tolerable concentration (2.5 mM). The DNAPL dissolution fluxes were calculated from the TCE concentration gradient, measured at the interface of the DNAPL layer and the porous layer. Biotic fluxes were a factor 2.4 (standard deviation 0.2) larger than abiotic dissolution fluxes. This diffusion-cell setup can be used to study the factors affecting the bio-enhanced dissolution of DNAPL and to assess bioaugmentation, pH buffer addition and donor delivery strategies for source zones.  相似文献   
6.
Xu W  Wang H  Liu R  Zhao X  Qu J 《Chemosphere》2011,83(7):1020-1027
Ferric and manganese binary oxide (FMBO) has been successfully used to remediate arsenic-polluted river, but there still lacks sufficient data to evaluate its effects on environments. The release behaviors of iron (Fe), manganese (Mn), and arsenic (As) in different Eh ranges were investigated for As-bearing FMBO sediment after remediating As-polluted DaSha River by FMBO. Under high Eh range (+550 to +400 mV), slight dissolution of Fe and Mn, which corresponded to 12.2% and 25.6%, and less than 5% of As release were observed in 336 h. Under lower Eh range (+50 to −100 mV), elevated extent of the dissolution of Mn and Fe were observed, which corresponded to as high as 61.3% and 70.1%. Under such conditions, the dissolution rate of Mn was higher than that of Fe. Furthermore, from the established relationship of As release and the dissolution of Fe and Mn, the release of As seemed dominated by the dissolution of Fe. X-ray photoelectron spectroscopy (XPS) analysis demonstrated the release of Fe, Mn, As(III), and As(V) after sodium ascorbate-treatment, and the re-adsorption of As(V), as indicated from the increased binding energy of As 3d from 44.78 to 45.83 eV. Surface element composition analysis indicated significant decrease of Mn from 3.22% to 0.54%, slight increase of Fe from 12.45% to 13.67%, and elevated ratio of As from 0.11% to 0.32% accordingly. The main reactions of Fe and Mn dissolution and the pathways of As release under different Eh ranges were also proposed.  相似文献   
7.
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   
8.
Dissolution of raw phosphate (apatite) in sea water of the Gulf of Aqaba was investigated through lab incubation experiments. Three types from three different sources (Al-Hasa, Al-Abyad and Esh-Shydiya) have been used for these experiments. Impact of quantity, grain size, and source (type) of raw phosphate on dissolution rate were studied. Statistical analysis shows significant differences between the results obtained from comparing each two weights; as weight of apatite increased, dissolved inorganic phosphate-phosphorus (DIP) and fluoride in sea water solution increased. The differences between the dissolution rates of raw phosphate from the three sites were not significant while the differences between the different grain size fractions were significant. Dissolution rates were inversely related to particle size. Using a worst-case scenario, a conservative estimate of the maximum increase in DIP in seawater of the Gulf of Aqaba due to the apatite particles lost to the sea during ship loading resulted in DIP concentrations of 0.03 μM per year. As the residence time of the water in the Gulf of Aqaba is about one year, the DIP concentration will not increase by more than 0.03 μM under the estimated annual quantity of exported phosphate. Fluoride will not increase by more than 0.03 mg/l under the same conditions.  相似文献   
9.
基于电磁波加载污泥的生物效应和溶出效应,将A2O系统的回流污泥进行电磁波加载,以期从微生物群落结构变化角度考察其对系统中厌氧池功能的影响.结果表明,电磁波加载回流污泥后,污泥絮体分解,细胞破壁;回流污泥中C、N、P的溶出效应显著.与加载前对比,厌氧池中TP富集效果更明显,富集率由122.9%增至152.2%;TN、COD去除率分别由7.3%、58.8%上升为32.1%和65.4%.MiSeq焦磷酸测序分析表明,回流污泥经电磁波加载后,厌氧池微生物群落的丰度增加,但其微生物多样性降低.碳源得到补充,厌氧池中微生物的代谢活性明显提高,活菌数量增加.厌氧池中富集了Zoogloea、Tolumonas、Dechloromonas等菌属.  相似文献   
10.
The extraction of K+ and SiO2 from silicate minerals by Bacillus mucilaginosus in liquid culture was studied in incubation experiments. B. mucilaginosus was found to dissolve soil minerals and mica and simultaneously release K+ and SiO2 from the crystal lattices. In contrast, the bacterium did not dissolve feldspar. B. mucilaginosus also produced organic acids and polysaccharides during growth. The polysaccharides strongly adsorbed the organic acids and attached to the surface of the mineral, resulting in an area of high concentration of organic acids near the mineral. The polysaccharides also adsorbed SiO2 and this affected the equilibrium between the mineral and fluid phases and led to the reaction toward SiO2 and K+ solubilization. These two processes led to the decomposition of silicate minerals by the bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号