首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
环保管理   1篇
综合类   1篇
基础理论   3篇
污染及防治   1篇
评价与监测   1篇
  2021年   2篇
  2018年   1篇
  2015年   1篇
  2011年   1篇
  2007年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
• Bacteria could easily and quickly attached onto TEP to form protobiofilms. • TEP-protobiofilm facilitate the transport of bacteria to membrane surface. • More significant flux decline was observed in the presence of TEP-protobiofilms. • Membrane fouling shows higher sensitivity to protobiofilm not to bacteria level. Transparent exopolymer particles (TEPs) are a class of transparent gel-like polysaccharides, which have been widely detected in almost every kind of feed water to membrane systems, including freshwater, seawater and wastewater. Although TEP have been thought to be related to the membrane fouling, little information is currently available for their influential mechanisms and the pertinence to biofouling development. The present study, thus, aims to explore the impact of TEPs on biofouling development during ultrafiltration. TEP samples were inoculated with bacteria for several hours before filtration and the formation of “protobiofilm” (pre-colonized TEP by bacteria) was examined and its influence on biofouling was determined. It was observed that the bacteria can easily and quickly attach onto TEPs and form protobiofilms. Ultrafiltration experiments further revealed that TEP-protobiofilms served as carriers which facilitated and accelerated transport of bacteria to membrane surface, leading to rapid development of biofouling on the ultrafiltration membrane surfaces. Moreover, compared to the feed water containing independent bacteria and TEPs, more flux decline was observed with TEP-protobiofilms. Consequently, it appeared from this study that TEP-protobiofilms play a vital role in the development of membrane biofouling, but unfortunately, this phenomenon has been often overlooked in the literature. Obviously, these findings in turn may also challenge the current understanding of organic fouling and biofouling as membrane fouling caused by TEP-protobiofilm is a combination of both. It is expected that this study might promote further research in general membrane fouling mechanisms and the development of an effective mitigation strategy.  相似文献   
2.
Membrane bioreactor biofouling is usually described as an extracellular matrix in which biopolymers, inorganic salts and active microbes co-exist. For that reason, biomineralization (BM) models can be useful to describe the spatial organization and environmental constraints within the referred scenario. BM arguments were utilized as background in order to (1) evaluate CaCO3 influence on flux decline; pore blocking and cake layer properties (resistance, permeability and compressibility) in a wide range of Chitosan/Bovine serum albumin (BSA) mixtures during step-pressure runs and, (2) perform membrane autopsies in order to explore the genesis of mineralized extracellular building blocks (MEBB) during cake layer build up. Using low molecular weight chitosan (LC) and BSA, 2 L of 5 LC/BSA mixtures (0.25-1.85 ratio) were pumped to an external ultra filtration (UF) membrane (23.5 cm2, hydrophobic, piezoelectric, 100 kDa as molecular weight cut-off). Eight different pressure steps (40 ± 7 to 540 ± 21 kPa) were applied. Each pressure step was held for 900 s. CaCO3 was added to LC/BSA mixtures at 0.5, 1.5 and 3 mM in order to create MEBB during the filtration tests. Membrane autopsies were performed after the filtration tests using thermo gravimetric, scanning microscopy and specific membrane mass (mg cm−2) analyses. Biopolymer-CaCO3 step-pressure filtration created compressible cake layers (with inner voids). The formation of an internal skeleton of MEBB may contribute to irreversible fouling consolidation. A hypothesis for MEBB genesis and development was set forth.  相似文献   
3.
It is estimated that some 17 metric tons of residual oxidants (chlorine) are discharged into the enclosed coastal seawater of Kuwait on a daily basis from power-desalination plants alone. Alarmed by the unlimited number of reported cases of damage to marine aquatic systems due to chlorine discharge around the world, several alternatives were proposed to control such a massive discharge of residual oxidant into seawaters. Most of the proposed alternatives lacked the basic criteria necessary for their evaluation, justification, and then selection. The objective of this article is to provide a conceptual approach that can be used to select a control measure for residual oxidant discharge in Kuwait coastal seawaters. This approach is based on state-of-the-art knowledge and the unique operational and environmental factors involved. A matrix system was designed whereby the cost of residual chlorine control alternative, its effectiveness, and environmental and public health impact, performance, and reliability in Kuwait can be compared and evaluated. The selection approach considered currently operating power plants in terms of their engineering design and material (cast iron or steel condensers), current operational conditions, operator's perception, acceptability, and projected problems associated with the environmental management of proposed modifications. The proposed approach revealed that in Kuwait, conventinal chlorination was marginally superseded only by chlorination/dechlorination using SO2 and operation alteration using process optimization. The overall cost-effective assessment matrix classified other alternatives as worse than chlorination by various degrees. Ozone and UV were found to be the worst and the least desirable alternatives for biofouling control of seawater in Kuwait. In light of the available information on the consequences of the Gulf War on the marine environment, and the potential formation of additional halogenated organic compounds through the reaction of residual chlorine with the released petroleum hydrocarbons, it is essential to control residual chlorine discharged into the nearshore environment of Kuwait.  相似文献   
4.
Cooling towers have the potential to develop infectious concentrations of Legionella pneumophila. Legionella counts increases where biofilm and warm water temperatures are present. In this study, biofilm associated L. pneumophila and heterotrophic bacteria were compared in terms of material dependence. Model cooling tower system was experimentally infected by L. pneumophila standard strain and monthly monitored. Different materials were tested for a period of 180 days. The lowest L. pneumophila and heterotrophic plate counts were measured on plastic polymers, whereas L. pneumophila and heterotrophic bacteria were accumulated rapidly on galvanized steel surfaces. It can be concluded that selection of plastic polymers, as a manufacturing material, are suitable for recirculating water systems.  相似文献   
5.
Characterization of the archaeal community fouling a membrane bioreactor   总被引:1,自引:0,他引:1  
Biofilmformation, one of the primary causes of biofouling, results in reducedmembrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilmthan the sludge during the establishment of biofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.  相似文献   
6.
Since the concept of the osmotic microbial fuel cell (OsMFC) was introduced in 2011, it has attracted growing interests for its potential applications in wastewater treatment and energy recovery. However, forward osmosis (FO) membrane fouling resulting in a severe water flux decline remains a main obstacle. Until now, the fouling mechanisms of FO membrane especially the development of biofouling layer in the OsMFC are not yet clear. Here, the fouling behavior of FO membrane in OsMFCs was systematically investigated. The results indicated that a thick fouling layer including biofouling and inorganic fouling was existed on the FO membrane surface. Compared to the inorganic fouling, the biofouling played a more important role in the development of the fouling layer. Further analyses by the confocal laser scanning microscopy (CLSM) implied that the growth of biofouling layer on the FO membrane surface in the OsMFC could be divided into three stages. Initially, microorganisms associated with ß-D-glucopyranose polysaccharides were deposited on the FO membrane surface. After that, the microorganisms grew into a biofilm caused a quick decrease of water flux. Subsequently, some of microorganisms were dead due to lack of nutrient source, in the meantime, polysaccharide and proteins in the biofouling layer were decomposed as nutrient source, thus leading to a slow development of the biofouling layer. Moreover, the microorganisms played a significant role in the formation and development of the biofouling layer, and further studies are needed to mitigate the deposition of microorganisms on FO membrane surfaces in OsMFCs.
  相似文献   
7.
•HAAs was dominant among the DBPs of interest. •Rising time, dose, temperature and pH raised TCM and HAAs but reduced HANs and HKs. •Low time, dose and temperature and non-neutrality pH reduced toxic risks of DBPs. •The presence of EPS decelerated the production of DBPs. •EPS, particularly polysaccharides were highly resistant to chlorine. Periodic chemical cleaning with sodium hypochlorite (NaClO) is essential to restore the membrane permeability in a membrane bioreactor (MBR). However, the chlorination of membrane foulants results in the formation of disinfection by-products (DBPs), which will cause the deterioration of the MBR effluent and increase the antibiotic resistance in bacteria in the MBR tank. In this study, the formation of 14 DBPs during chemical cleaning of fouled MBR membrane modules was investigated. Together with the effects of biofilm extracellular polymeric substances (EPS), influences of reaction time, NaClO dosage, initial pH, and cleaning temperature on the DBP formation were investigated. Haloacetic acids (HAAs) and trichloromethane (TCM), composed over 90% of the DBPs, were increasingly accumulated as the NaClO cleaning time extended. By increasing the chlorine dosage, temperature, and pH, the yield of TCM and dichloroacetic acid (DCAA) was increased by up to a factor of 1‒14, whereas the yields of haloacetonitriles (HANs) and haloketones (HKs) were decreased. Either decreasing in the chlorine dosage and cleaning temperature or adjusting the pH of cleaning reagents toward acidic or alkaline could effectively reduce the toxic risks caused by DBPs. After the EPS extraction pretreatment, the formation of DBPs was accelerated in the first 12 h due to the damage of biofilm structure. Confocal laser scanning microscopy (CLSM) images showed that EPS, particularly polysaccharides, were highly resistant to chlorine and might be able to protect the cells exposed to chlorination.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号