首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2680篇
  免费   274篇
  国内免费   1340篇
安全科学   252篇
废物处理   322篇
环保管理   230篇
综合类   2335篇
基础理论   313篇
污染及防治   720篇
评价与监测   103篇
社会与环境   12篇
灾害及防治   7篇
  2024年   2篇
  2023年   58篇
  2022年   94篇
  2021年   134篇
  2020年   141篇
  2019年   108篇
  2018年   117篇
  2017年   103篇
  2016年   128篇
  2015年   164篇
  2014年   183篇
  2013年   218篇
  2012年   270篇
  2011年   239篇
  2010年   178篇
  2009年   244篇
  2008年   167篇
  2007年   261篇
  2006年   277篇
  2005年   196篇
  2004年   160篇
  2003年   162篇
  2002年   130篇
  2001年   109篇
  2000年   105篇
  1999年   72篇
  1998年   64篇
  1997年   49篇
  1996年   34篇
  1995年   31篇
  1994年   20篇
  1993年   27篇
  1992年   14篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有4294条查询结果,搜索用时 31 毫秒
1.
基于不同废污泥源的短程反硝化快速启动及稳定性   总被引:1,自引:1,他引:0  
张星星  王超超  王垚  徐乐中  吴鹏 《环境科学》2020,41(8):3715-3724
为探究不同废污泥源快速启动短程反硝化和实现稳定NO_2~--N积累的可行性,在3个完全相同的SBR反应器(S1、S2和S3)分别接种:实验室城市污水反硝化除磷系统排泥、城市污水厂剩余污泥及河涌底泥,比较其短程反硝化启动快慢和NO_2~--N积累特性,考察系统短程反硝化活性和NO_3~--N→NO_2~--N转化性能,并从微生物学角度分析反应器功能菌群特征.结果表明,在乙酸钠为唯一碳源、高碱度和适宜COD/NO_3~--N比进水条件下,3个SBR短程反硝化反应器在短时间内均能够成功启动,系统平均NO_3~--N→NO_2~--N转化率为S1 S2 S3(75. 92% 73. 36% 69. 90%).同时发现持续低温条件下S1和S2呈现不同程度的短程反硝化性能恶化趋势,但S3能够稳定维持良好NO_2~--N积累性能.微生物高通量测序表明,变形菌门和拟杆菌门居PD系统主导地位,3个短程反硝化反应器NO_2~--N积累关键功能菌属Thauera属丰度差异明显:S3 S1 S2(25. 09% 4. 71% 3. 60%),表明S3具备稳定高效的NO_2~--N积累性能,同时高丰度Thauera属可能是维持低温短程反硝化活性的重要原因.  相似文献   
2.
电化学氧化法具有稳定高效、操作灵活、集成度高等特点,在处理难降解有机废水领域具有独特优势.电化学废水处理过程通常受限于传质速率,而膜电极有望解决这一瓶颈问题.亚氧化钛膜电极(TiSO-ME)的化学结构与电化学性质结果显示,经过高温还原法制备的TiSO-ME电极主要由Ti4O7和少量Ti5O9组成,大孔体积占总孔体积的92.7%,平均孔径为0.508 μm.电化学测试结果表明,TiSO-ME具有良好的导电性、高析氧电位和电化学稳定性.过滤试验结果表明,在0.82×10-3~3.14×10-3 mL·cm-2·s-1范围内膜通量与传质系数成正比.在电流密度为8 mA·cm-2,膜通量为2.31×10-3 mL·cm-2·s-1的条件下,电解1.5 h即可有效处理实际印染工业废水,sCOD去除率高达96.07%,电流效率可达24.22%,电能消耗较不存在膜通量时降低了32.99%.TiSO-ME能够实现废水在膜孔结构内部的穿流式操作,有效克服旁流式操作传质受限的问题,在小规模分散式工业废水处理中有着重要的研究价值和发展潜力.  相似文献   
3.
挥发性有机物(VOCs)大量排放已成为日益严重的环境问题,为了实现VOCs的高效去除,本文采用自蔓延燃烧合成法制备了一系列锰铈复合氧化物催化剂,将稳恒直流电场引入典型VOCs气体苯的催化氧化过程,并基于不同电场条件下催化剂的理化性质表征结果进行机理分析.实验结果表明,MnxCey催化剂对含苯废气的去除有良好的效果,稳恒直流电场显著促进了催化剂的活性,其中Mn1Ce3的催化性能最佳,电流为5 mA时,Mn1Ce3催化剂在155℃可达到50%的苯转化率,在202.4℃可达到90%的苯转化率,对应的转化温度T50T90比传统方法分别降低了62.4℃和48.3℃,且电场中的反应活化能由52.32 kJ·mol-1降低至32.31 kJ·mol-1.根据实验现象及表征结果,发现协同效应与活性位点的快速持续再生及活性氧物种的转化有关,由此提出苯在MnxCey催化剂上的氧化机理及电场协同催化的反应模型.  相似文献   
4.
以华南稻田土壤为研究对象通过构建微宇宙体系,研究了淹水稻田自养硝酸盐还原耦合As(III)氧化过程及其微生物群落结构组成.结果表明,NO3-的添加促进了稻田土壤中As(III)的氧化,在未添加NO3-的处理(Soil+As(III))以及灭菌处理(Sterilized soil+As(III)+NO3-)中As(III)未发生明显的氧化;在Soil+As(III)+NO3-处理中,NO3-有少量被还原,而在Soil+NO3-处理中,NO3-没有被还原.通过16S rRNA高通量分析在NO3-还原耦合As(III)氧化体系中微生物群落结构特征,在Soil+As(III)+NO3-处理中shannon指数相对较低为8.19,土壤微生物群落多样性降低,其中在门水平上主要优势菌群为变形菌门Proteobacteria(33%)、绿弯菌门Chloroflexi(11%)、浮霉菌门Planctomycetes(12%);在属水平上主要的优势菌属为Gemmatimonas(7.4%)以及少量的Singulisphaera、Thermomonas、Bacillus.NO3-的添加能够促进稻田土壤中自养As(III)氧化,并且影响着稻田土壤中微生物群落组成.  相似文献   
5.
Chemical oxidation was applied to an artificially contaminated soil with naphthalene (NAP). Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. The importance of the air phase analysis was emphasized by demonstrating how NAP behaves in a sealed system over a 4 hr reaction period. Design of Experiments method was applied to the following variables: sodium persulfate concentration [SP], ferrous sulfate concentration [FeSO4], and pH. The system operated with a prefixed solid to liquid ratio of 1:2. The following conditions resulted in optimum NAP removal [SP] = 18.37 g/L, [FeSO4] = 4.25 g/L and pH = 3.00. At the end of the 4 hr reaction, 62% of NAP was degraded. In the soil phase, the chemical oxidation reduced the NAP concentration thus achieving levels which comply with Brazilian and USA environmental legislations. Besides the NAP partitioning view, the monitoring of each phase allowed the variabilities assessment over the process, refining the knowledge of mass reduction. Based on NAP distribution in the system, this study demonstrates the importance of evaluating the presence of semi-volatile and volatile organic compounds in the air phase during remediation, so that there is greater control of the system as to the distribution and presence of the contaminant in the environment. The results highlight the importance of treating the contaminant in all its phases at the contaminated site.  相似文献   
6.
Methylglyoxal(CH_3COCHO,MG),which is one of the most abundant α-dicarbonyl compounds in the atmosphere,has been reported as a major source of secondary organic aerosol(SOA).In this work,the reaction of MG with hydroxyl radicals was studied in a 500 L smog chamber at(293±3) K,atmospheric pressure,(18±2)% relative humidity,and under different NOx and SO_2.Particle size distribution was measured by using a scanning mobility particle sizer(SMPS) and the results showed that the addition of SO_2 can promote SOA formation,while different NOx concentrations have different influences on SOA production.High NOx suppressed the SOA formation,whereas the particle mass concentration,particle number concentration and particle geometric mean diameter increased with the increasing NOx concentration at low NOx concentration in the presence of SO_2.In addition,the products of the OH-initiated oxidation of MG and the functional groups of the particle phase in the MG/OH/SO_2 and MG/OH/NOx/SO_2 reaction systems were detected by gas chromatography mass spectrometry(GC-MS) and attenuated total reflection fourier transformed infrared spectroscopy(ATR-FTIR) analysis.Two products,glyoxylic acid and oxalic acid,were detected by GC-MS.The mechanism of the reaction of MG and OH radicals that follows two main pathways,H atom abstraction and hydration,is proposed.Evidence is provided for the formation of organic nitrates and organic sulfate in particle phase from IR spectra.Incorporation of NOx and SO_2 influence suggested that SOA formation from anthropogenic hydrocarbons may be more efficient in polluted environment.  相似文献   
7.
In the present work we compared the biological activity of DCF, 4′-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products (2-hydroxyphenylacetic acid; 2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline) which are produced during AOPs, such as ozonation and UV/H2O2. We also examined the interaction of DCF with chlorogenic acid (CGA). CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge. In the present experiment the evaluation of following parameters was performed: E. coli K-12 cells viability, growth inhibition of E. coli K-12 culture, LC50 and mortality of Chironomus aprilinus, genotoxicity, sodA promoter induction and ROS generation. In addition the reactivity of E. coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured. The results showed the influence of DCF, 4′-OHDCF and 5-OHDCF on E. coli K-12 cells viability and bacteria growth, comparable to AOPs by-products. The highest toxicity was observed for selected, tested AOPs by-products, in comparison to the DCF, 4′-OHDCF and 5-OHDCF. Genotoxicity assay indicated that 2,6-dichloroaniline (AOPs by-product) had the highest toxic effect. The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF, 4′-OHDCF and 5-OHDCF, compared to other tested compounds. We have also found that there is an interaction between chlorogenic acid and DCF, which resulted in increased toxicity of the mixture of the both compounds to E. coli K-12, comparable to parent chemicals. The strongest response of E. coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters, comparable to control sample was noticed. It indicates, that E. coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment. Due to toxicity and biological activity of tested DCF transformation products, there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.  相似文献   
8.
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios (25, 50, 100 and 200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350°C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5 (25) exhibited the highest selectivity to N2, exceeding 90% at 350°C. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Brønsted acidity and the isolated Cu2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.  相似文献   
9.
In order to understand the compositions characteristics of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) fraction in road dust (RD2.5) of oasis cities on the edge of Tarim Basin, 30 road dust (RD) samples were collected in Kashi, Cele, and Yutian in the spring, 2018, and RD2.5 was collected using the resuspension approach. Eight water-soluble ions, 39 trace elements and 8 fractions of carbon-containing species in PM2.5 were analyzed. Ca2+ and Ca were the most abundant ions and elements in RD2.5 (7.1% and 9.5%). Cl- in RD2.5 was affected not only by attributed to saline-alkali soils in oasis cities of the Tarim Basin and dust from Taklimakan Desert but also by human activities. Moreover, the organic carbon/elemental carbon (OC/EC) ratio indicated that carbon components in RD2.5 in Cele town mainly come from fossil fuel combustion, while those in Yutian and Kashi mainly come from biomass combustion. It is noteworthy that high Ca in RD2.5 was seriously affected by anthropogenic emissions, and high Na and K contents in RD2.5 could be derived from soil and desert dust. It was estimated that Cd, Tl, Sn and Cr were emitted from anthropogenic emissions using the enrichment factor. The coefficients of divergence (COD) result indicated that the influence of local emission on road dust emission is greater than that of long-distance transmission. This study is the first time to comprehensively analyze the chemical characteristics of road dust in oasis cities, and the results provides the sources of road dust at the margin of Tarim Basin.  相似文献   
10.
In order to study the concentrations of major components,characteristics and comparison in hazy and non-hazy days of PM_(10) in Beijing,aerosol samples were collected at urban site in Beijing from December 29,2014 to January 22,2015.Heavy metals like Zn,Pb,Mn,Cu,As,V,Cr and Cd were deeply studied considering their toxic effects on human being;nine water-soluble inorganic ions(SO_4~(2-),NO_3~-,NH_4~+,Na~+,K~+,Cl~-,Ca~(2+) and Mg~(2+)) and carbon fractions(OC and EC) were also analyzed.The concentrations of heavy metals were 1.03–1.98 times higher in hazy days than those in non-hazy days,mainly due to biomass burning and coal burning.The trends in total heavy metals concentrations were basically consistent with the trends in PM concentrations except for two obvious periods(12.29–12.30;1.14–1.15);but when air masses accumulated locally or around Beijing,trends in PM concentrations and heavy metals were opposite.The proportion for NO_3~-/SO_4~(2-) indicated that mobile sources such as automobiles were important reasons for haze in Beijing.Correlation between OC and EC during non-hazy days was strong(R~2= 0.95) but it was low(R~2= 0.67) during hazy days,and large variations for OC/EC values occurred in hazy days.The calculated mass concentration of SOC is 2.58 μg/m~3,which only accounted for 10.1% of the OC concentration.When air masses from the far north-west,they decreased PM concentration in Beijing and they were relatively clean;however,those from the near east,south-east and south of the mainland increased PM concentration and they were dirty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号