首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   1篇
  国内免费   32篇
安全科学   1篇
环保管理   4篇
综合类   39篇
基础理论   21篇
污染及防治   69篇
评价与监测   6篇
社会与环境   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   20篇
  2010年   5篇
  2009年   12篇
  2008年   10篇
  2007年   12篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
1.
Exposure to endocrine disruptors (EDCs) could disrupt thyroid hormone homeostasis. However, human epidemiological studies reported inconsistent observations, and scarce information on the effect of a mixture of chemicals. The aim of the present study was to examine the associations of multiple chemicals with thyroid hormones among adults from China. We measured serum levels of thyroid hormones and urinary levels of 11 EDCs, including six phthalate metabolites, bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), perchlorate, and thiocyanate among 177 healthy adults without occupational exposure. Associations of multiple urinary analytes with serum thyroid hormones were examined by performing general linear regression analysis and bayesian kernal machine regression analysis. These EDCs were detected in almost all samples. After adjusting for various covariates, we observed only BPF significantly associated with total thyroxin (TT4) (β=-0.27, 95% confidence interval (CI) [-0.41, -0.14]), total triiodothyronine (TT3) (β=-0.02 95% CI [-0.03, -0.01]), free T4 (fT4) (β=-0.02, 95% CI [-0.03, -0.01]), and free T3 (fT3) (β=-0.04, 95% CI [-0.07, -0.01]), and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and monoethyl phthalate (MEP) positively associated with TT4 (β=0.24, 95% CI [0.01, 0.48]) and fT4 (β=0.02, 95% CI [0.01, 0.04]), respectively. Moreover, we observed significant dose-response relationships between TT4 and the mixture of 11 EDCs, and BPF was the main contributor to the mixture effect, suggesting the priority of potential effect of BPF on disrupting thyroid function under a real scenario of human exposure to multiple EDCs. Our findings supported the hypothesis that human exposure to low levels of EDCs could alter thyroid hormones homeostasis among non-occupational healthy adults.  相似文献   
2.
Abstract

The presence of diethyl-phthalate (DEP), dibutyl-phthalate (DBP), butylbenzyl-phthalate (BBP), diethylhexyl-phthalate (DEHP) and diisononyl-phthalate (DINP) was determined in 295 tequila samples. They were grouped by age of maturation (white, aged, extra aged or ultra aged) and year of production (between 2013 and 2018). Gas Chromatography coupled with Mass Spectrometry was used for identification and quantification. The results showed that 65 samples (22% of the total) were phthalate free. DEP (0.13-0.27?mg/kg), BBP (0.05–2.91?mg/kg) and DINP (1.64–3.43?mg/kg) were detected in 11 (3.73%), 37 (12.54%) and 5 (1.69%) samples, respectively. But, these concentrations did not exceed the maximum permitted limits (MPL) of phthalates for alcoholic beverages. DBP (0.01–2.20?mg/kg) and DEHP (0.03–4.64?mg/kg) were detected in 96 (32.54%) and 224 (75.93%) samples, from them only 10 (3.39%) and 15 (5.08%) samples, respectively, exceeded the MPL for alcoholic beverages and they were few tequilas produced in the year 2014 or before. DEHP was the most frequent phthalate found in tequila and observed DEHP concentrations were 2-times higher in ultra aged tequilas compared to those in white tequilas. We concluded that all tequilas produced in 2015 and after, satisfied the international standards for these compounds.  相似文献   
3.
次氯酸钠氧化消除水中BPA的影响因素和动力学   总被引:1,自引:0,他引:1  
汪雪姣  高乃云  孙晓峰  徐斌 《环境科学》2007,28(11):2544-2549
采用常用消毒剂次氯酸钠对内分泌干扰物双酚A(BPA)的氧化消除及动力学规律进行研究,考察了加氯量、BPA初始浓度、pH值、Br-浓度和温度各因素对降解效果的影响.结果表明,次氯酸钠对BPA的氧化降解过程符合拟一级反应动力学;pH值对该降解反应影响较大,当pH为8~9时,BPA与 HOCl的反应速率达到最大为0 .544 3 min-1;溶液中存在Br-会加快BPA的降解,并且其整体反应不符合拟一级动力学规律,随着Br-浓度的增加,BPA降解得越快;温度对该降解反应的影响较大并且符合Van't Hoff规则,提高反应温度,有利于氯对BPA的降解.  相似文献   
4.
Anthropogenic compounds that are able to disrupt the endocrine system of wildlife species are a major cause for concern and have led to a demand for new screening methods. The identification and quantification of endocrine disruptor compounds at wastewater treatment plant is of major interest to assess the endocrine activity of wastewater treatment plant discharges into the environment. This study consists of a preliminary survey of concentrations of previously selected endocrine disruptor compounds, undertaken to establish environmental concentrations and to support a biological program assay exposing freshwater fish to them. Selected endocrine disrupting chemicals (APEs, bisphenol A and 17 β-estradiol) were measured in samples from a wastewater treatment plant located in Lisbon (Portugal), using recent commercial enzyme-linked immunosorbent assay kits and also LC-MS/MS. The results show that the wastewater treatment plant treatment process is efficient on the removal of target endocrine disruptor compounds. However, environmentally significant concentrations are still present in the treated effluent. The results also show that enzyme-linked immunosorbent assay kit is suitable for routine analysis of the selected compounds. The results are also useful since the wastewater treatment plant is located in a Mediterranean region, which results in an effluent with its own characteristics.  相似文献   
5.
Temporal and spatial patterns of micropollutants in urban receiving waters   总被引:1,自引:0,他引:1  
Based on a monitoring program over the course of a year, we characterize the temporal and spatial distribution of selected micropollutants in an urban watershed within the city of Leipzig, Germany. Micropollutants revealed a ubiquitous presence in untreated and treated wastewater, surface water and groundwater. The loads of 4-nonylphenol in the effluents of the municipal wastewater treatment plant followed a seasonal trend, whereas the loads of all other micropollutants were highly variable and not correlated to seasons. In the surface water, load seasonality of caffeine, galaxolide and tonalide resulted from a rapid removal with increased water temperature. The loads of 4-nonylphenol and of caffeine in the colder months increased when rainfall occurred. In the groundwater, complex spatial and temporal patterns were apparent and were related to varying input, retardation and removal processes. As a consequence, an assessment of micropollutants in urban waters should consider different micropollutants' temporal and spatial variability.  相似文献   
6.
Background, aim, and scope  The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-β-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination. The applicability of the ELRA for routine analysis in environmental assessment was evaluated. Salinity is often a critical factor for bioassays in ecotoxicological sediment assessment. Therefore, salinity of the samples was additionally adjusted to different levels to characterise its influence on elution and binding processes of receptor-binding substances. Materials and methods  The ELRA was carried out with the human estrogen receptor α (ER) in a 96-well microplate format using the experimental setup known from the competitive immunoassay based on ligand–protein interaction. It is an important improvement that a physiologically relevant receptor was used as a linking protein instead of an antibody. The microplates were coated with a 17-β-estradiol-BSA conjugate, and dilution series of estradiol and of native sediment samples were added and incubated with the ER. After a washing step, a biotinylated mouse anti-ER antibody was added to each well. Receptor binding to estradiol, agonistic and antagonistic receptor binding, were determined by a streptavidin-POD-biotin complex with subsequent measurement of the peroxidase activity at the wavelength of 450 nm using a commercial ELISA multiplate reader. The sediment elutriates and pore water samples of sediments were tested in a dilution series to evaluate at which dilution step the receptor-binding potential ends. In the elution process (see Section 2.1 to 2.2), a method was developed to adjust the salinity to the levels of the reference testings, which offers an appropriate option to adjust the salinity in both directions. Statistical evaluation was made with a combination of the Mann–Whitney U test and the pT-method. Results  This part of the study characterised the environmental factor ‘salinity’ for prospective applications of the ELRA. Using reference substances such as 17-β-estradiol, the ELRA showed sigmoid concentration-effect relations over a broad range from 0.05 μg/l to 100 μg/l under physiological conditions. After methodological optimisation, both sensitivity and tolerance of the assay against salinity could be significantly raised, and the ELRA became applicable under salinity conditions up to concentrations of 20.5‰. The mean relative inter-test error (n = 3) was around 11% with reference substances and below 5% for single sediments elutriates in three replicates each. For sediment testings, the pore water and different salinity-adjusted elutriates of 13 sediments were used. A clear differentiation of the receptor-binding potential could be reached by application of the pT-method. Thereby, pT-values from one to six could be assigned to the sediments, and the deviation caused by the different salinity conditions was one pT-value. The mean standard deviation in the salinity adaptation procedure of the elutriates was below 5%. Discussion  Although the ELRA has already been used for assessments of wastewater, sludge and soil, its applicability for samples to different salinity levels has not been investigated so far. Even if the ELRA is not as sensitive as the E-screen or the YES-assay, with regard to reference substances like 17-β-estradiol, it is a very useful tool for pre-screening, because it is able to integrate both estrogenic as well as anti-estrogenic receptor-binding effects. According to the results of sediment testing, and given the integrative power to detect different directions of effects, the ELRA shows sufficient sensitivity and salinity tolerance to discriminate receptor-binding potentials in environmental samples. Conclusions  The optimised ELRA assay is a fast, cost-effective, reliable and highly reproducible tool that can be used for high-throughput screening in a microplate format in detecting both estrogenic and anti-estrogenic effects. Additionally, the ELRA is robust against microbial contaminations, and is not susceptible towards cytotoxic interferences like the common cell-culture methods. The general applicability and sufficient sensitivity of the ELRA was shown in freshwater environments. Marine and brackish samples can be measured up to salinity levels of 20.5‰. Recommendations and perspectives  In view of the proven sensitivity, functionality and the fastness of the ELRA, it is recommendable to standardise the test method. At the moment, no adequate in vitro test procedure exists which is standardised to DIN or ISO levels. The E-screen and the yeast estrogen/androgen screens (YES/YAS) sometimes underlie strong cytotoxic effects, as reported in the first part of this study. Further development of an ELRA assay using human androgen receptors appears to be very promising to gain information about androgenic and anti-androgenic effects, too. This would offer a possibility to use the ELRA as a fast and reliable pre-screening tool for the detection of endocrine potentials, thus minimising time and cost-expensive animal experiments.  相似文献   
7.
Part V—sorption of pharmaceuticals and personal care products   总被引:5,自引:0,他引:5  
Background, aim, and scope  Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs) whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and directions. Main features  We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP–soil or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved organic matter (DOM)–mineral–water). The complexity of three-phase systems was also discussed. Results  Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption, and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their environmental risk and for pollution control. Discussion  Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical–physical properties, and their sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the framework of nonlinear interactions is still unavailable. Conclusions  Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions of soils or sediments and the sorption of their metabolites and different species. Recommendations and perspectives  More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites and species and the competition between them is still not enough to be incorporated into any predictive models.  相似文献   
8.
Ozonation as final wastewater (WW) polishing step, following conventional activated sludge treatment is increasingly implemented in sewage treatment for contaminant degradation to prevent surface water pollution. While the oxidative degradation of chemicals has been extensively investigated, the in vivo toxicological characteristics of ozonated whole effluents are rarely a matter of research.In the present study, whole effluents were toxicologically evaluated with an in vivo test battery before and after full-scale ozonation and subsequent sand filtration on site at a treatment plant. One aquatic plant (duckweed, Lemna minor) and five invertebrate species of different systematic groups (Lumbriculus variegatus, Chironomus riparius, Potamopyrgus antipodarum, Daphnia magna) were exposed to the effluents in a flow-through-designed test system with a test duration of 7-28 d.None of the considered toxicity endpoints correlated with the pollutant elimination. A tendency towards an increased toxicity after ozonation was apparent in three of the test systems showing [statistically] significant adverse effects in the L. variegatus toxicity test (decrease in reproduction and biomass). After sand filtration, adverse effects were reduced to a similar level like after conventional treatment. Solely the Daphnia reproduction test revealed beneficial effects after ozonation in combination with sand filtration.Results of the test battery indicate the formation of adverse oxidation products during WW ozonation. L. variegatus appeared to be the most sensitive of the five test species. Sand filtration effectively removes or detoxifies toxic oxidation products, as toxic effects were subsequently reduced to the level after conventional treatment.  相似文献   
9.
A comprehensive evaluation of organic contamination was performed in sediments sampled in two reference and three impacted small streams where endocrine disruptive (ED) effects in fish have been evidenced. The approach combined quantitative chemical analyses of more than 50 ED chemicals (EDCs) and a battery of in vitro bioassays allowing the quantification of receptor-mediated activities, namely estrogen (ER), androgen (AR), dioxin (AhR) and pregnane X (PXR) receptors. At the most impacted sites, chemical analyses showed the presence of natural estrogens, organochlorine pesticides, parabens, polycyclic aromatic hydrocarbons (16 PAHs), bisphenol A and alkylphenols, while synthetic steroids, myco-estrogens and phyto-estrogens were not detected. Determination of toxic-equivalent amounts showed that 28-96% of estrogenic activities in bioassays (0.2-6.3 ng/g 17β-estradiol equivalents) were explained by 17β-estradiol and estrone. PAHs were major contributors (20-60%) to the total dioxin-like activities. Interestingly, high PXR and (anti)AR activities were detected; however, the targeted analysed compounds could not explain the measured biological activities. This study highlighted the presence of multiple organic EDCs in French river sediments subjected to mixed diffuse pollution, and argues for the need to further identify AR and PXR active compounds in the aquatic environment.  相似文献   
10.
To identify and prioritize chemicals that may affect thyroid and adrenal/interregnal endocrine system and to reduce cost and animal use by conventional toxicity assay, an in vivo screening assay was developed using zebrafish embryos/larvae based on measurement of expression of genes that were suggested to play important roles in hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis. Model chemicals that could modulate HPT and HPI axis in adult fish were selected in assay validation, including anti-thyroid agent 6-Propyl-2-thiouracil (PTU) and cytochrome P450 11B (Cyp11b) enzyme inhibitor metyrapone (MET). Zebrafish embryos were exposed to different concentrations of model chemical from 4 h post-fertilization (hpf) to 5 d post-fertilization (dpf). Exposure to PTU increased mRNA expression of sodium iodide symporter (nis) and thyroglobulin (tg) involved in HPT axis, and MET treatment up-regulated all the mRNA expression tested involved in HPI axis by a compensatory mechanism. These results suggested that HPT and HPI axis were active upon chemical exposure at least at 5 dpf zebrafish. Furthermore, we studied the effects of PTU or MET on the cross-talk between HPT and HPI axis. The results demonstrated that PTU and MET could affect cross-talk responses in zebrafish embryos/larvae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号