首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
综合类   1篇
污染及防治   2篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2′-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS·+). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg?1 in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg?1 in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS·+ method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6–15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.  相似文献   
2.
Ahmad MK  Mahmood R 《Chemosphere》2012,87(7):750-756
Potassium bromate (KBrO3) is a widely used food additive, a water disinfection by-product and a known nephrotoxic agent. The effect of KBrO3 on rat blood, especially on the anti-oxidant defense system, was studied in this work. Animals were given a single oral dose of KBrO3 (100 mg/kg body weight) and sacrificed 12, 24, 48, 96 and 168 h after this treatment. Blood was collected from the animals and separated into plasma and erythrocytes. KBrO3 administration resulted in increased lipid peroxidation, protein oxidation, hydrogen peroxide levels and decreased the reduced glutathione content indicating the induction of oxidative stress in blood. Methemoglobin levels and methemoglobin reductase activity were significantly increased while the total anti-oxidant power was greatly reduced upon KBrO3 treatment. Nitric oxide levels were enhanced while vitamin C concentration decreased in KBrO3 treated animals. The activities of major anti-oxidant enzymes were also altered upon KBrO3 treatment. The maximum changes in all these parameters were 48 h after the administration of KBrO3 and then recovery took place. These results show for the first time that KBrO3 induces oxidative stress in blood and impairs the anti-oxidant defense system. Thus impairment in the anti-oxidant power and alterations in the activities of major anti-oxidant enzymes may play an important role in mediating the toxic effects of KBrO3 in the rat blood. The study of such biochemical events in blood will help elucidate the molecular mechanism of action of KBrO3 and also for devising methods to overcome its toxic effects.  相似文献   
3.
包括量子点在内的人工纳米颗粒是近年来突出的环境污染物,为确定其在生物膜中的扩散过程和特征,应用TIRF(全内反射荧光)、FRAP(荧光漂白后恢复)等技术,研究了CdTe/CdS/ZnS核壳式量子的微米级的团聚体在细菌Comamonas testoteroni生物膜表面的吸附动力学、生物膜内部的扩散及其在生物膜中的溶解和毒性.结果表明:通过TIRF技术观察到生物膜可快速吸附>1 μm的CdTe/CdS/ZnS核壳式量子点团聚体,而且通过CLSM(激光扫描共聚焦荧光显微镜)进行深度扫描发现,量子点团聚体吸附到生物膜表面后可以进一步扩散到生物膜深层,在25 min内可穿透45 μm的生物膜,并在生物膜中随深度呈线性分布特征.FRAP分析表明,量子点团聚体被生物膜固定后还具有较强的移动性,漂白区的荧光强度在5 min可恢复30%.量子点团聚体在生物膜中会溶解产生Cd2+、Zn2+等重金属离子,从而对生物膜产生毒性并杀死细菌.研究显示,虽然纳米颗粒进入环境中会形成微米级的团聚体,但依然可以进入生物膜,对水生微生物生态系统产生危害.TIRF、CLSM和FRAP技术是研究纳米颗粒物在生物膜表面吸附和内部扩散动力学的有效工具.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号