首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
安全科学   1篇
环保管理   5篇
综合类   2篇
污染及防治   1篇
灾害及防治   1篇
  2022年   1篇
  2021年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2006年   2篇
  2004年   1篇
  2000年   1篇
  1983年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT: It has been well established that the greenhouse gas loading of the atmosphere has been increasing since the mid 19th century. Consequently, shifts in the earth's radiative balance are expected with accompanying alterations to the earth's climate. With these anticipated, and perhaps already observable, changes in both global and regional climate, managers of regional water resources seek insight to the possible impacts climate change may have on their present and future water supplies. The types and degrees of impacts that climate change may have on New York City's water supply system were assessed in a study of a watershed at Allaben, New York. Hypothetical scenarios of future climate and climate change projections from three General Circulation Models (GCMs) were used in conjunction with the WatBal hydrological model and the Palmer Drought Severity Index (PDSI) to ascertain how runoff and soil moisture from this watershed may change in a warmer climate. For the worst case predictions, the results indicate that within the century of the 2000s, the watershed's air temperature may increase up to about 11°F, while its precipitation and runoff may decrease by about 13 and 30 percent, respectively. If this watershed is typical of the others within the New York City water supply system, the system's managers should consider implementing mitigation and adaptation strategies in preparation for the worst of these possible future conditions.  相似文献   
2.
长江中下游地区21世纪气候变化情景预测   总被引:18,自引:0,他引:18  
利用IPCC数据分发中心提供的7个模式的模拟结果,分析了由于人类活动影响,温室气体(GG)增加以及温室气体和硫化物气溶胶(GS)共同增加时,长江中下游地区未来50~100年的气候变化情景.结果表明,长江中下游地区21世纪的未来温度变化与全球和全国一样,都将呈增加的趋势.GG作用下,2050年和2100年长江中下游地区的变暖幅度分别为2.2℃和4.5℃左右,比全国以及东部和西部地区的变暖幅度小;GS作用下2050年和2100年,其分别为1.2℃和3.9℃,总体上,长江中下游地区的变暖幅度低于全球与全国的变暖幅度.各个季节相比,春季和冬季的增温幅度最大,夏季最小,在两种情形下,长江中下游地区21世纪中期夏季温度将分别增加2.3和0.8℃,2100年将分别增加4.1和3.1℃.对降水变化的分析表明,GG作用下,长江中下游地区与全球、全国以及中国西部和东部地区相比,降水增加的幅度最大;GS作用下,降水增加趋势不明显;综合7个模式的模拟结果,GG作用下,春季和秋季降水增加最明显,夏季次之;GS作用下,长江中下游地区的年平均降水变化不明显,夏季降水增加.同时,本文还对长江中下游地区21世纪中期和末期的温度和降水变化的地理分布进行了分析,两种情形下,都是长江以北的增温幅度大于长江以南.GG作用下,春季长江中下游地区21世纪中期降水将增加5%~7.5%,夏季则是长江下游地区降水增加较大,将增加10%,而长江中游地区降水增加不明显;21世纪末,春季和夏季长江中下游地区的降水增加幅度都将加大,尤其是长江以南地区的降水增加最明显;考虑GG和GS的共同影响后,长江以南的地区降水增加,长江以北地区降水减少.  相似文献   
3.
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains.  相似文献   
4.
为了解决现有的装配式建筑施工安全绩效评价已不能满足建筑业信息化背景下发展需求的问题,基于“三度空间”视角,从物理、社会、信息3个层面,构建包含6个一级指标以及23个二级指标的装配式建筑施工安全绩效评价体系;阐述各指标之间的相互关联;采用ANP网络模型对各指标赋权;利用灰色聚类法对施工安全绩效指标进行评价。研究结果表明:该评价模型能够分析装配式建筑在社会、物理和信息3个空间维度的安全绩效,得出装配式建筑项目的整体安全绩效水平并识别出关键控制指标,可为装配式建筑安全绩效评价提供新的思路。  相似文献   
5.
气候变化对海河流域水资源的影响及其对策   总被引:8,自引:1,他引:7  
将全球气候模式与分布式水文模型WEP-L耦合,在国家气候中心整理提供的多模式平均数据集基础上,利用WEP-L模拟了海河流域历史30年(1961—1990年)和未来30年(2021—2050年)降水、蒸发、径流等主要水循环要素的变化规律,分析了气候变化对海河流域水资源的影响,结果表明,未来30年:①从年际变化规律看,气温普遍升高,降雨量略有增加,蒸发量普遍加大,径流量呈减少趋势,且有丰水年洪水规模更大、平水或枯水年干旱情况更严重的趋势;②从年内变化规律看,各月蒸发量普遍增加,汛期的降雨量有所减少,非汛期的降雨量有所增加,各月径流量则有不同程度的减少。因此,未来气候变化条件下海河流域水资源管理将面临更加严峻的挑战,本研究给出了一些基本的对策。  相似文献   
6.
ABSTRACT: The antecedent precipitation index (API) has been a useful indicator of soil moisture conditions for watershed runoff calculations, and recent attempts to correlate this index with spaceborne microwave observations have been fairly successful. The prognostic equation for soil moisture used in some of the atmospheric general circulation models (GCM) together with Thomthwaite-Mather parameterization of actual evapotranspiration leads to API equations. The recession coefficient for API is found to depend on climatic factors as contained in potential evapotranspiration and to depend on soil texture as reflected by field capacity and permanent wilting point. A recently developed model for global insolation is used with climatological data for Wisconsin to simulate the annual trend of the recession coefficient. Good quantitative agreement is shown with the observed trends at Fennimore and Colby watersheds in Wisconsin. This study suggests that API could be a unifying concept for watershed and atmospheric general circulation modeling.  相似文献   
7.
This study applied three statistical downscaling methods: (1) bias correction and spatial disaggregation at daily time scale (BCSD_daily); (2) a modified version of BCSD which reverses the order of spatial disaggregation and bias correction (SDBC), and (3) the bias correction and stochastic analog method (BCSA) to downscale general circulation model daily precipitation outputs to the subbasin scale for west‐central Florida. Each downscaled climate input dataset was then used in an integrated hydrologic model to examine differences in ability to simulate retrospective streamflow characteristics. Results showed the BCSD_daily method consistently underestimated mean streamflow because the highly spatially correlated small precipitation events produced by this method resulted in overestimation of evapotranspiration. Highly spatially correlated large precipitation events produced by the SDBC method resulted in overestimation of the standard deviation of wet season daily streamflow and the magnitude/frequency of high streamflow events. BCSA showed better performance than the other methods in reproducing spatiotemporal statistics of daily precipitation and streamflow. This study demonstrated differences in statistical downscaling techniques propagate into significant differences in streamflow predictions, and underscores the need to carefully select a downscaling method that reproduces precipitation characteristics important for the hydrologic system under consideration.  相似文献   
8.
A coupled atmosphere–ocean general circulation model, ECHAM5-MPIOM, was used to study the multicompartmental cycling and long-range transport of persistent and semivolatile organics. Multiphase systems in air and ocean are covered by submodels for atmospheric aerosols, HAM, and marine biogeochemistry, HAMOCC5, respectively. The model, furthermore, encompasses 2D surface compartments, i.e. top soil, vegetation surfaces and sea-ice. The total environmental fate of γ-hexachlorocyclohexane (γ-HCH, lindane) and dichlorophenyltrichloroethane (DDT) in agriculture were studied.DDT is mostly present in the soils, the water-soluble γ-HCH in soils and ocean. DDT has the longest residence time in almost all compartments. Quasi-steady state with regard to substance accumulation is reached within a few years in air and vegetation surfaces. In seawater the partitioning to suspended and sinking particles contributes to the vertical transport of substances. On the global scale deep water formation is, however, found to be more efficient. Up to 30% of DDT but only less than 0.2% of γ-HCH in seawater are stored in particulate matter.On the time scale studied (1 decade) and on global scale substance transport in the environment is determined by the fast atmospheric circulation. The meridional transport mechanism, for both compounds, is significantly enhanced by multi-hopping. Net meridional transport in the ocean is effective only regionally, mostly by currents along the western boundaries of Africa and the Americas. The total environmental burdens of the substances experience a net northward migration from their source regions, which is more pronounced for DDT than for γ-HCH. Due to the application distribution, however, after 10 years of simulation 21% of the global environmental burden of γ-HCH and 12% of DDT have accumulated in the Arctic.  相似文献   
9.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968–1987 and 1988–1997, respectively. The R2 and Nash‐Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30‐year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ?49, ?26, 28, and 58 percent were predicted for precipitation change scenarios of ?20, ?10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ?6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO‐RegCM2, CCC, CCSR, CISRO‐Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes.  相似文献   
10.
气候变化对中国黄淮海农业区小麦生产影响模拟研究   总被引:21,自引:0,他引:21  
研究首先利用1980-2000年黄淮海农业区10个站点的农业数据对CER ES-W heat动态机理作物模型进行详细的验证,然后将CERESW-heat模型与两个全球气候模式(G ISS和H adley)结合,同时考虑到CO2对小麦的直接施肥作用,模拟了黄淮海农业区10个站点在IPCC SR ES A 2和B2两个气候情景下雨养和灌溉小麦产量和水分利用的变化趋势。得到如下结论:在不考虑CO2直接肥效的情况下,黄淮海农业区雨养小麦全面减产,空间分布特点是西部减产幅度大,东部减产幅度小;在充分灌溉的情况下,灌溉小麦产量维持了现有水平,但灌溉水量增加。因此,在未来该地区水资源短缺的情况下,如何合理利用有限的水资源将成为黄淮海农业区主要面临的问题。在考虑CO2直接肥效的情况下,雨养和灌溉小麦产量都全面增产,雨养小麦的增产幅度明显偏高,灌溉小麦约增产10%~30%,但CO 2的肥效能否充分实现还需要进一步研究证明。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号