首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
  国内免费   3篇
废物处理   1篇
环保管理   7篇
综合类   9篇
基础理论   23篇
污染及防治   30篇
评价与监测   2篇
社会与环境   1篇
  2020年   1篇
  2018年   4篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   13篇
  2010年   9篇
  2009年   13篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
青铜峡铝厂氟污染对广武乡玉米影响的调查分析   总被引:1,自引:0,他引:1  
监测了青铜峡铝厂东南方向4.5km的广武乡玉米叶,得知含氟量为43.94-166.1mg/kg,对照样品树新林场玉米叶的含氟均值为13.15mg/kg,广武乡的玉米受到了严重的氟污染,农作物减产严重。  相似文献   
2.

The potential of using phytochemicals from leaves of wild tomato for controlling the two-spotted spider mite, Tetranychus urticae Koch, is explored in this study as a promising alternative to the use of synthetic pesticides. Wild tomato accessions of Lycopersicon hirsutum plants that are not consumed by humans were planted under greenhouse conditions for mass production of leaves. Crude extracts from leaves of three accessions of L. hirsutum, six accessions of L. hirsutum f. glabratum, and one accession each of L. pennellii and L. pimpinellifolium were prepared in chloroform, ethanol and hexane. Two spider mite bioassays, one a measure of antibiosis and the other a measure of repellency, were utilized to determine the acaricidal performance of the crude extracts. The bioassay for antibiosis was a 6-h no-choice test. The bioassay for repellency utilized a ring bioassay. Chloroform leaf extracts of L. hirsutum f. glabratum accessions (PI-251304, PI-134417, PI-134418, and PI-126449) exhibited greatest antibiotic activity on two-spotted spider mites; the hexane extracts exhibited greatest repellency. Extracts from PI-251304, PI-126449, PI-134417, and PI-134418 were especially lethal (chloroform) or repellent (hexane). We investigated differences in chemical composition of the crude leaf extracts that may explain the observed differences in mortality and repellency among the different accessions. Major chemical compounds (α -curcumene, α -zingiberene, trans-caryophyllene, 2-undecanone, and 2-tridecanone) known to have pesticidal efficacy were detected and quantified in the crude leaf extracts using a gas chromatograph (GC) equipped with a mass spectrometer (GC/MS). Lethality of extracts was mainly associated with the presence of high concentrations of 2-tridecanone; repellency of extracts was mainly associated with the presence of trans-caryophyllene. Leaf extracts of L. hirsutum f. glabratum accessions that contain significant quantities of 2-tridecanone and/or trans-caryophyllene could be useful for managing populations of spider mites, which could reduce reliance on synthetic pesticides.  相似文献   
3.
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO2]) and elevated ozone concentration ([O3]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO2] and [O3] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO2 fumigation had begun, but O3 fumigation had not. Trees in elevated [CO2] plots showed a stimulation of leaf area index (36%), while trees in elevated [O3] plots had lower leaf area index (−20%). While individual leaf area was not significantly affected by elevated [CO2], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO2]; however, the two clones responded differently to long-term growth at elevated [O3]. The O3-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O3] (−32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O3] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O3], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions.  相似文献   
4.
To clarify the effects of O3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O3 at 60 and 100 nl l−1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O3. Although there was no significant effect of O3 on stomatal diffusive conductance to H2O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O3 may detrimentally affect wheat production in Bangladesh.  相似文献   
5.
A pot experiment was conducted to study the allelopathic effects of initial decomposing leaf litter of Cinnamomum camphora on growth and physiology of Impatiens balsamina. Three leaf litter treatments included 20, 40 and 80 g of C. camphora leaf litter mixed with 8 kg of soil, namely T1, T2, and T3, respectively. In order to test the effect of leaf litter addition on the permeability and ventilation of soil simultaneously, a parallel trial with steamed leaf litter was conducted with the three treatments of the leaf litter. The leaf litter was steamed for 2 d to remove the secondary metabolites as much as possible, dried, and then mixed with 8 kg of soil, namely Z1, Z2, and Z3, respectively. No leaf litter was added in control (CK). The growth parameters of I. balsamina were determined at the 20 d, 60 d, 100 d and 120 d after sowing and the main physiology indicators were determined at the 60 d. The results indicated that: (1) The ground surface diameter and height of I. balsamina were inhibited significantly at 60 d (P < 0.05). Photosynthetic pigments and gas exchange parameters of I. balsamina were inhibited significantly at 60 d, and the inhibition effect was stronger with increased amount of leaf litter addition. The chlorophyll content, Pn and Ls decreased significantly with increased amount of leaf litter (P < 0.05). The activity of superoxide dismutase (SOD) and peroxidase (POD) in leaves of I. balsamina decreased with the increase of leaf litter addition. The content of MDA in treatments T1, T2 and T3 were all higher than that in CK, which indicated that I. balsamina suffered oxidative damage in a certain degree. The content of free proline (Pro) and soluble sugar (SS) in leaves of I. balsamina decreased significantly with the increase of the leaf litter (P < 0.05), while the content of soluble protein (SP) increased. (2) In the parallel trial, 60 d after sowing, no obvious difference was observed between CK and any steamed leaf litter treatment in terms of the morphological and physiological features stated above (P > 0.05). It indicated that the soil physical properties were not greatly influenced by leaf litter addition in the dose interval designed, or that the release of secondary metabolites from decomposing leaf litter was probably a better reason to explain the inhibition of leaf litter treatment to I. balsamina growth. (3)The compound effect (CE) of leaf litter decomposition on I. balsamina was enhanced with increase of the leaf litter, to 0.169, 0.354, and 0.497, respectively, in treatments of T1, T2 and T3. The study indicated that initial decomposition of C. camphora leaf litter in soil reduces the content of photosynthetic pigments, inhibits photosynthetic capacity and resistance physiology of I. balsamina, weakens its adaptability to the environment, and restrains growth of the plant. © 2015, Science Press. All rights reserved.  相似文献   
6.

A chamber study was conducted to evaluate the growth response and leaf nitrogen (N) status of four plant species exposed to continuous ammonia (NH3) for 12 weeks (wk). This was intended to evaluate appropriate plant species that could be used to trap discharged NH3 from the exhaust fans in poultry feeding operations before moving off-site. Two hundred and forty bare-root plants of four species (Juniperus virginiana (red cedar), Gleditsia triacanthos var. inermis (thornless honey locust), Populus sp. (hybrid poplar), and Phalaris arundinacea (reed canary grass) were transplanted into 4- or 8-L polyethylene pots and grown in four environmentally controlled chambers. Plants placed in two of the four chambers received continuous exposure to anhydrous NH3 at 4 to 5 ppm while plants in another two chambers received no NH3. In each of the four chambers, 2 to 4 plants per species received no fertilizer while the rest of the plants were fertilized with a 100 ppm solution containing 21% N, 7% phosphorus, and 7% potassium. The results showed that honey locust was the fastest-growing species. The superior growth of honey locust among all species was also supported by its total biomass, root, and root dry matter (DM) weights. For all species there was a trend for plants exposed to NH3 to have greater leaf DM than their non-exposed counterparts at 6 (43.0 vs. 30.8%; P = 0.09) and 12 wk (47.9 vs. 36.6%; P = 0.07), and significantly greater (P ≤ 0.05) leaf N content at 6 (6.44 vs. 3.67%) and 12 wk (7.05 vs. 3.51%) when exposed to NH3. Numerically greater leaf DM due to NH3 exposure was also consistently measured in poplar at both sampling periods. Hybrid poplar, as well as honey locust and reed canary grass, deposited 1.5 to 2-fold greater N in their leaves than red cedar tissues as a result of NH3 exposure compared to non-exposed plants. Regardless of the effect of NH3 on foliar color and damage score of the plants, the increase of foliar N content (g 100 g?1 of fresh foliage weight) after NH3 exposure at 6 and 12 wk was 0.45 and 0.87 for grass,1.25 and 1.34 for locust, and 2.67 and 6.09 for poplar. However, only honey locust likely benefited from ambient NH3 as indicated by its consistent leaf color quality and lower damage score, compared with other species that were adversely affected by atmospheric NH3.  相似文献   
7.
The effects of clomazone on the growth of tobacco (Nicotiana tabacum L. ‘NC2326’) callus and leaf discs were studied under four light regimes. Callus cultures and leaf discs were grown on Murashige and Skoog medium supplemented with IAA and kinetin. Light regimes were: dark grown callus kept in the dark and also transferred to the light; light grown callus kept in the light and also transferred to the dark. Two‐month‐old callus (cultured for 2 months from initiation) grew more rapidly than twelve‐month‐old callus (cultured for 12 months from initiation) under all conditions tested. Callus transferred from light to dark, or from dark to light, increased in fresh weight slower than did the callus maintained totally in light or dark. Clomazone {2‐[(2‐chlorophenyl)methyl]‐4,4‐dimethyl‐3‐isoxazolidinone} at 140 mg l? 1 or more was lethal to both callus and leaf discs whereas 10 mg l? 1 was stimulatory to growth. Callus tissue responded to clomazone differently depending on the light regime under which it was grown. While clomazone may be affecting the isoprenoid pathway in the callus and leaf disks resulting in growth inhibition, it is possible that other target sites are also being affected and contribute to the reduced growth.  相似文献   
8.
Summary. We examined the role of plant phenology in the evolution of anti-herbivore defence in symbiotic ant-plant protection mutualisms. Phenology of the host-plant affects traits of its herbivores, including size, growth rate, development time, and gregariousness. Traits of herbivores in turn determine what traits ants must have to protect their host. Diversity in plant phenological traits could thus help explain the great ecological diversity of coevolved ant-plant mutualisms. We explored the postulated causal chain linking phenology of the plant, herbivore adaptations to phenology, and ant adaptations for protection, by comparing two myrmecophytes presenting strong contrasts in phenology. In Leonardoxa africana, a slow-growing understory tree, growth at each twig terminal is intermittent, the rapid flushing of a single leaf-bearing internode being followed by a pause of several months. In contrast, axes of Barteria nigritana, a tree of open areas, grow continuously. Analysis of the phenology (kinetics of expansion) and chemistry of leaf development (contents of chlorophylls, lignin, and nitrogen during leaf growth) showed that these two species exhibit strongly contrasting strategies. Leonardoxa exhibited a delayed greening strategy, with rapid expansion of leaves during a short period, followed by synthesis of chlorophylls and lignins only after final leaf size has been reached. In contrast, leaves of Barteria expanded more slowly, with chlorophylls and lignin gradually synthesised throughout development. Differences in the phenology of leaf development are reflected in differences in the duration of larval development, and thereby in size, of the principal lepidopteran herbivores observed on these two plants. This difference may in turn have led to different requirements for effective defence by ants. The strategy of phenological defence may thus affect the evolution of biotic defence.  相似文献   
9.
ADELwheat is an architectural model that describes development of wheat in 3D. This paper analyzes the robustness of the parameterization of ADELwheat for spring wheat cultivars in relation to plant population density and shading. The model was evaluated using data from two spring wheat experiments with three plant population densities and two light regimes. Model validation was done at two levels of aggregation: (a) by comparing parameterization functions used as well as parameter values to the data (leaf and tiller appearance, leaf number, blade dimensions, sheath length, internode length) and (b) by comparing ground cover (GC) and leaf area index (LAI) of simulated virtual wheat plots with GC and LAI calculated from data. A sensitivity analysis was performed by modulating parameters defining leaf blade dimensions and leaf or tiller appearance rate.In contrast to population density, shading generally increased phyllochron and delayed tiller appearance. Both at the level of the organ and at the level of the canopy the model performed satisfactorily. Parameterization functions in the model that had been established previously applied to independent data for different conditions; GC and LAI were simulated adequately at three population densities. Sensitivity analysis revealed that calibration of phyllochron and blade area needs to be accurate to prevent disproportional deviations in output.The robustness of the model parameterization and the simulation performance confirmed that the model is a complete architectural model for aboveground development of spring wheat. It can be used in studies that require simulation of spring wheat structure, such as studies on plant–insect interaction, remote sensing, and light interception.  相似文献   
10.
To explore the role of endophytic fungi in the decomposition of litter, the endophytic fungi Penicillium sp. strain CG2 (A), Fusarium flavum strain AY13 (B), and Talaromyces strain AJ14 (C) of Cunninghamia lanceolata were added to experimental pots in different forms (mycelium, sterilized fermentation broth, single fungus, and mixed fungi), and a control treatment (CK) was set up (no fungi added). At 10, 30, 60, 90, and 120 days after litter decomposition, a study on the decomposition dynamics of C. lanceolata litter under different treatments was performed. The results showed that the rate of leaf mass loss was the highest in the sterilized fermentation broth treatment A after 120 days, and that there was a significant difference (P < 0.05) between the mycelium treatment AC and the control treatment after 60 days (23.97% higher than the control group). On day 60, the litter carbon content from the mycelium treatment A was significantly different from that of the control (P < 0.05), showing a 16.74% lower value, whereas the litter carbon content of the mycelium treatment B was 21.13% lower than that of the control after 90 days. The nitrogen content of the litters of most mycelium and sterilized fermentation broth treatments was increased compared to that of the control group; there was significant difference (P < 0.05) between the sterilized fermentation broth treatment A and the control (P < 0.05), with a 17.05% higher value than that of the control. Similar to nitrogen, the litter phosphorus content also increased; there was a statistically significant difference between the mycelium treatment A and the control group, with treatment A showing a 46.67% higher value than the control group. The potassium content was 28% lower than that of the control group under the sterilized fermentation broth treatment C, a result that was significantly different from that of the control group (P < 0.05). After treatment for 90 days, the ratio of carbon to nitrogen was the lowest under the treatments with the mycelium A and the mycelium B, with values 25.54% and 25.11% lower than that of the control group, respectively, and a statistically significant difference from that of the control group (P < 0.05). The ratio of carbon to phosphorus was the lowest under the treatment with mycelium A after 60 days, and the result was significantly different from that of the control (P < 0.05), with a 43.05% lower value than the control. Thus, the three endophytic fungi had different effects on the mass loss rate and nutrient content of the litter. The Penicillium sp. strain CG2 (A) had statistically significant effects on the mass loss and nutrient content of leaf litter, which was within the range of fungi fertilizer reference values for the breeding of C. lanceolata. © 2018 Science Press. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号