首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   6篇
  国内免费   47篇
废物处理   1篇
环保管理   2篇
综合类   51篇
基础理论   59篇
污染及防治   30篇
评价与监测   2篇
社会与环境   3篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   3篇
  2013年   33篇
  2012年   12篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   3篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1987年   1篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
1.
This research aimed to evaluate the alga Scenedesmus obliquus toxicity induced by textiledyeing effluents(TDE).The toxicity indicator of TDE in alga at the physiological(algal growyth),biochemical(chlorophyll-a(Chl-a) synthesis and superoxide dismutase(SOD) activity) and structural(cell membrane integrity) level were investigated.Then we further study the relationship among toxicity indicators at physiological and biochemical level,and supplemented by research on algal biomacromolecules.According to the analysis of various endpoints of the alga,the general sensitivity sequence of toxicity endpoints of Scenedesmus obliquus was:SOD activity Chl-a synthesis algal growth.The stimulation rate of SOD activity increased from day 3(57.25%~83.02%) to day 6(57.25%~103.81%),and then decreased on day 15(-4.23%~-32.96%),which indicated that the antioxidant balance system of the algal cells was destroyed.The rate of Chl-a synthesis inhibition increased gradually,reaching19.70%~79.39% on day 15,while the rate of growth inhibition increased from day 3(-12.90%~10.16%) to day 15(-21.27%~72.46%).Moreover,the algal growth inhibition rate was positively correlated with the inhibition rate of SOD activity or Chl-a synthesis,with the correlation coefficients were 0.6713 and 0.5217,respectively.Algal cells would be stimulating to produce excessive reactive oxygen species,which would cause peroxidation in the cells,thereby destroying chloroplasts,inhibiting chlorophyll synthesis and reducing photosynthesis.With increasing exposure time,irreversible damage to algae can lead to death.This study is expected to enhance our understanding of the ecological risks through algal tests caused by TDE.  相似文献   
2.
Biodiesel provides a feasible solution to the twin crisis of energy security and environmental concerns prevalent today, and it can be extracted from conventional oil crops as well as microalgae. However, lipid productivity in case of microalgae is much higher and has several advantages as compared with crop plants, so it is a better feedstock for biodiesel. In case of Chlorella pyrenoidosa, the heterotrophic cultured cells were found to be better in terms of lipid production, and ultimately biodiesel production, but the bottleneck is that in this mode glucose is used to feed the cells, which amounts to almost 80% of the total cost of biodiesel production. The purpose of this study is to evaluate and highlight the feasibility of using the industrially cheap cane molasses as a carbon source in place of glucose for a large-scale, low-cost lipid production of Chlorella pyrenoidosa. When treated molasses was used as a carbon source instead of glucose, the biomass sharply increases from 0.89 to 1.22 g L–1. On the other hand, the total lipid content increases from 0.27 to 0.66 g g–1. The specific growth rate and yield was higher in treated molasses as compared with that in glucose-supplemented. A mathematical model was also developed based on logistic, Luedeking–Piret, and Luedeking-Piret-like equations. Model predictions were in satisfactory agreement with the measured data, and the mode of lipid production was growth-associated.  相似文献   
3.
This paper reports data on the relative ability of CaO, CaCl2, MgO, MgCl2, TiO2, and hectorite (SHCa-1) to induce oxidative stress (as determined by lipid peroxidation, LP) in biological matrices. The effectiveness of structural (oxide form) versus soluble Ca and Mg to induce LP is compared. An assessment on cytotoxicity as affected by soluble and structural Ca, Mg, TiO2 and SHCa-1 is also addressed. LP was screened and monitored using the Thiobarbituric Acid Reactive Substances (TBARS). The extent of TBARS production was found to vary with the type and initial concentration of the soluble or structural cation, Ca or Mg respectively. Obtained results showed higher magnitude values for the latter set of experiments. In the presence of TiO2 no significant TBARS production was detected pointing out a negligible effect of TiO2 on LP. At solid concentrations ca. 100 ppm, CaO appears to be more effective than SHCa-1 to induce LP. By contrast at ca. 25 ppm, MgO appears to be more effective than the clay mineral. The SHCa-1 LP-inducing activity has been proven to closely relate to structural Ca. The prevalence of mechanisms that may induce LP but not cytotoxicity (as determined by cell growth inhibition) was also addressed. Results on cell growth inhibition as affected by soluble and structural Ca, Mg, TiO2 and hectorite provide evidence to support that structural Ca or Mg brings about significantly higher variations than soluble Ca.  相似文献   
4.
The protective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against TCDD induced toxicity was investigated in human peripheral blood mononuclear cells (PBMC). PBMC (1 × 106 cells mL−1) were divided into four groups and were incubated in a CO2 incubator (5% CO2) for 12 h with vehicle, TCDD (10 nM), TCDD + HT (10 nM + 100 μM) and HT alone (100 μM) respectively. To clarify the role of HT against TCDD induced cytotoxicity, oxidative stress and the levels of antioxidant enzymes were assessed. Incubation of PBMC with TCDD significantly decreased cell viability, catalase (CAT) and glutathione peroxidase (GPx) and increased the levels of superoxide dismutase (SOD), glutathione reductase (GR) and oxidative stress markers such as lipid peroxidation products (LPO), protein carbonyl content (PCC) and reactive oxygen species (ROS). Whereas, HT had an effective antioxidant property as observed by the increased cell viability, normalization of antioxidant enzymes and decreased levels of LPO, PCC and ROS in PBMC co-treated with HT and TCDD. Apoptosis detection and comet assay results shows that HT, by acting as an antioxidant, prevents the damage to DNA induced by TCDD. In addition light microscopic and histopathological observations revealed that the cells are apoptotic and degenerated during TCDD treatment, whereas cells showed intact morphology during co-treatment with HT. On the whole, the results reveal that HT exerts a promising antioxidant potential in protecting the PBMC against TCDD induced oxidative stress, which might be due to the presence of catechol moiety in its structure.  相似文献   
5.
Cobalt is an essential element, but at high concentrations it is toxic. In addition to its well-known function as an integral part of cobalamin (vitamin B12), cobalt has recently been shown to be a mimetic of hypoxia and a stimulator of the production of reactive oxygen species. The present study investigated the responses of goldfish, Carassius auratus, to 96 h exposure to 50, 100 or 150 mg L−1 Co2+ in aquarium water (administered as CoCl2). The concentrations of cobalt in aquaria did not change during fish exposure. Exposure to cobalt resulted in increased levels of lipid peroxides in brain (a 111% increase after exposure to 150 mg L−1 Co2+) and liver (30-66% increases after exposure to 50-150 mg L−1 Co2+), whereas the content of protein carbonyls rose only in kidney (by 112%) after exposure to 150 mg L−1 cobalt. Low molecular mass thiols were depleted by 24-41% in brain in response to cobalt treatment. The activities of primary antioxidant enzymes, superoxide dismutase (SOD) and catalase, were substantially suppressed in brain and liver as a result of Co2+ exposure, whereas in kidney catalase activity was unchanged and SOD activity increased. The activities of glutathione-related enzymes, glutathione peroxidase and glutathione-S-transferase, did not change as a result of cobalt exposure, but glutathione reductase activity increased by ∼40% and ∼70% in brain and kidney, respectively. Taken together, these data show that exposure of fish to Co2+ ions results in the development of oxidative stress and the activation of defense systems in different goldfish tissues.  相似文献   
6.
Crude oil (from oil terminal) and raw phosphate (from phosphate port) pollution are responsible for the lowered health conditions of coral reefs at their vicinity in the Jordanian coast of the Gulf of Aqaba. Both in situ incubations and ex situ laboratory exposure experiments were used to study the effects of those pollutants on corals, by using molecular and biochemical biomarkers in the coral Stylophora pistillata. For ex situ part of the experiment, crude oil and raw phosphate were added to a final concentration of 500?ppm for both pollutants. The DNA damage was assessed by Comet assay, while biochemical stress markers were reassessed by lipid peroxidation (LPO) test. Although the corals looked healthy from outside, the use of stress biomarkers indicated that they are under high pressure at the cellular level. The corals incubated with oil and phosphate had more DNA damage and LPO in comparison with the control samples. The results obtained suggest that the use of stress biomarkers can be used as important prognostic tools for examining the sub-lethal stress on corals before their death.  相似文献   
7.
Valant J  Drobne D  Novak S 《Chemosphere》2012,87(1):19-25
The aim of this study was to find out whether ingested titanium dioxide nanoparticles (nano-TiO2) cause cell membrane damage by direct contact or by lipid peroxidation. We assessed lipid peroxidation and digestive gland cell membrane stability of animals fed on food dosed with nano-TiO2. Conventional toxicity measures were completed to determine if cellular effects are propagated to higher levels of biological complexity. An invertebrate model organism (Porcellio scaber, Isopoda, Crustacea) was fed with food containing nanosized TiO2 and the result confirmed that at higher exposure concentrations after 3 d exposure, nano-TiO2 destabilized cell membranes but lipid peroxidation was not detected. Oxidative stress as evidenced by lipid peroxidation was observed at longer exposure durations and high exposure doses. These data suggest that cell membranes are destabilized by direct interactions between nanoparticles and cell membrane, not solely via oxidative stress.  相似文献   
8.
The effects of mercuric chloride (Hg) on lipid peroxidation (LPO), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione (GSH) levels in different organs of mice (CD-1) were evaluated. Mice were exposed (2 days/week) to 0.0 (control), 0.8 (low) and 8.0 (mid) and 80.0 (high) gHg/kg/day for 2 weeks. The high dose group was excluded from the study due to high mortality. LPO levels in kidney, testis and epididymus at low and mid doses; GR and GPx levels in testis at mid dose; SOD levels in brain and testis at both doses, liver and epididymus at mid dose; GSH levels in testis at both doses were significantly increased compared to their controls. However, the GR levels in kidney at both doses and in epididymus at mid dose; GPx levels in kidney and epididymus and SOD levels in kidney at both the doses; GSH levels in epididymus at mid dose were significantly decreased compared to their control. Body weight gain and food efficiency were significantly reduced (<0.05) in mid dose. These results indicated that Hg treatment enhanced LPO in all tissues, but showed significant enhancement only in kidney, testis and epididymus suggesting that these organs were more susceptible to Hg toxicity. The increase in antioxidant enzyme levels in testis could be a mechanism protecting the cells against reactive oxygen species.  相似文献   
9.
In this research, toxicological safety of two newly developed methods for the treatment of landfill leachate from the Piškornica (Croatia) sanitary landfill was investigated. Chemical treatment procedure combined chemical precipitation with CaO followed by coagulation with ferric chloride and final adsorption by clinoptilolite. Electrochemical treatment approach included pretreatment with ozone followed by electrooxidation/electrocoagulation and final polishing by microwave irradiation. Cell viability of untreated/treated landfill leachate was examined using fluorescence microscopy. Cytotoxic effect of the original leachate was obtained for both exposure periods (4 and 24 h) while treated samples showed no cytotoxic effect even after prolonged exposure time. The potential DNA damage of the untreated/treated landfill leachate was evaluated by the comet assay and cytokinesis-block micronucleus (CBMN) assay using either human or plant cells. The original leachate exhibited significantly higher comet assay parameters compared to negative control after 24 h exposure. On the contrary, there was no significant difference between negative control and chemically/electrochemically treated leachate for any of the parameters tested. There was also no significant increase in either CBMN assay parameter compared to the negative control following the exposure of the lymphocytes to the chemically or electrochemically treated landfill leachate for both exposure periods while the original sample showed significantly higher number of micronuclei, nucleoplasmic bridges and nuclear buds for both exposure times. Results suggest that both methods are suitable for the treatment of such complex waste effluent due to high removal efficiency of all measured parameters and toxicological safety of the treated effluent.  相似文献   
10.
Exposure to iron oxides dusts may lead to lung cancers among exposed population. To evaluate the involvement of iron‐containing particles in lipid peroxidation by production of reactive oxygen species, hematite, magnetite (iron oxides), and crocidolite (asbestos compound) were tested. The peroxidation was followed by the evaluation of some degradation products of lino‐lenic acid. In a buffered medium, magnetite is higher active than hematite. The addition of an iron chelator (EDTA) or of a reducing agent (ascorbate) in this medium enhances the activity of hematite and magnetite, and the combination of both EDTA and ascorbate increases their activity. Crocidolite is the most active whatever the medium. The appearance of the EDTA‐iron‐oxygen complexes related to the reactivity of these oxides is postulated. These results suggest that the oxidizing activity triggered by hematite and magnetite, in a medium containing an iron chelator and a reducing agent, may lead to damages in biological medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号