首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Exposures of caged organisms in situ have proven to be a useful way to improve exposure realism and link to stressor effects in aquatic assessments of hazard or risk. A novel cage system, the benthic in situ toxicity identification evaluation (BiTIE), was developed for benthic macroinvertebrates (surrogate species, resident populations and communities) to separate low and high flow effects, and major chemical classes of stressors in streams. Three resin types were used to separate the chemical stressors in the streams Honey Creek and Little Beavercreek, Ohio, USA: Dowex Optipore (non-polar organics), zeolite (ammonia), and polywool (control). Isonychia spp. sensitivity was compared to Chironomus tentans, and no significant differences were found (p>0.05). Isonychia spp. growth (length) showed a stressor response in the zeolite treatments, and community testing revealed improved metric responses in the Dowex treatments. The BiTIE chamber system demonstrated stressor-response relationships using sublethal and multimetric endpoints.  相似文献   
2.
In streams, periphyton biofilms are important sinks for trace metals such as cadmium and are primary food sources of many invertebrate consumers. To study Cd trophic transfer, we produced differentially contaminated diets by exposing natural periphyton to environmentally relevant dissolved Cd ranging from 0 to 10 μg L−1 for 6-7 days using a radiotracer approach. On average, periphyton grown during three different seasons bioconcentrated Cd similarly - approximately 1315 (±442) -fold above dissolved concentrations. However, mayfly larvae (Centroptilum triangulifer) raised on these differentially contaminated diets (first instar through adulthood) had significantly higher trophic transfer factors from periphyton grown in Aug and Nov 2008 (4.30 ± 1.55) than from periphyton grown in Jan 2009 (0.85 ± 0.21). This Cd bioaccumulation difference is only partially explained by apparent food quality and subsequent growth differences. Taken together, these results suggest that primary producers at the base of food webs drive metal bioaccumulation by invertebrate grazers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号