首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   1篇
基础理论   1篇
污染及防治   1篇
  2021年   1篇
  2014年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A new robust method for determination of hydrocarbons in water without use of Freon or other halogenated solvents has been validated and subjected to an interlaboratory exercise. The method is based on extraction with a light hydrocarbon (boiling point in the 39–69°C range), followed by cleanup for removal of polar components and detection by gas chromatography (GC) with flame ionisation (FID) detection. The performance characteristics of the method are comparable with that of the previous Freon-IR method with recoveries in the 60–80% range and reproducibility (between laboratory variations) of about 30%.

A screening method for hydrocarbons in the range 5 ppm and above based on infrared spectroscopy (IR), and a promising method for detection of low levels based on solid phase extraction (SPE) has been tested and validated.  相似文献   

2.
• Underwater superoleophobic membrane was fabricated by deposition of catechol/chitosan. • The membrane had ultrahigh pure water flux and was stable under harsh pH conditions. • The membrane exhibited remarkable antifouling property in O/W emulsion separation. • The hydration layer on the membrane surface prevented oil droplets adhesion. Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation. However, conventional membranes usually suffer from severe pore clogging and surface fouling, and thus, novel membranes with superior wettability and antifouling features are urgently required. Herein, we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride (PVDF) substrate. Membrane morphology and surface chemistry were studied using a series of characterization techniques. The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating. It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions. Moreover, the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface, which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water (O/W) emulsion separation. The modified membrane exhibited a competitive flux of ~428 L/(m2·h·bar) after three filtration cycles, which was 70% higher than that of the pristine PVDF membrane. These results suggest that the novel underwater superoleophobic membrane can potentially be used for sustainable O/W emulsions separation, and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity.  相似文献   
3.
Significant amount of work is reported on development of vegetable oil based metalworking fluids (MWFs). Many also report on development and performance evaluation of vegetable based oils. For many of these water-based MWFs with vegetable oils, much effort is focused on stable emulsification of vegetable oil in water using a variety of surfactants. It has been found that surfactant-free stable emulsification of oil in water is possible through ultrasonic vibration. However, emulsification through ultrasonic atomization has not yet been considered, and the feasibility of emulsified metalworking fluids through ultrasonic atomization has not been investigated. In this paper, stable emulsification of vegetable oil in water has been achieved through ultrasonic atomization without using any surfactant. The emulsified vegetable oil in water is directly used to investigate its effectiveness as MWF in milling operations. Lower cutting forces, chip thickness, and burr amount are observed with vegetable oil-in-water emulsion compared to conventional MWF. The experimental results show strong potential for vegetable oil-in-water emulsion obtained through ultrasonic atomization as an effective MWF.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号